IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp637-647.html
   My bibliography  Save this article

Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile

Author

Listed:
  • Soto-Rivas, Karina
  • Richter, David
  • Escauriaza, Cristian

Abstract

To characterize energy resources and study of hydrodynamic effects induced by marine hydrokinetic devices in tidal channels, numerical models need to provide reliable representations of turbine arrays. In regions disconnected from the grid, near coastal protected areas and other relevant economic activities, there is a pressing need to evaluate the impacts of limited-size arrays. Here, we use the emblematic Chacao Channel in Southern Chile to understand the effects of bathymetry and array placement on energy extraction in strongly tidal channels. We implement in FVCOM a parameterization from a previously derived high-resolution model to represent a group of turbines in different locations. We first analyze the complexity of the bathymetry to define the appropriate grid size and obtain a correct representation of the interaction of turbines with the bed morphology. We simulate a base case to identify three suitable locations in the channel where we analyze the effects of the turbines: From simulations we compute the changes in the mean velocity, turbulent kinetic energy (TKE), and bed shear stress. The results show that baseline velocities and TKE are the main factors on the momentum extraction despite the bed complexity. However, in flatter bathymetries, changes on TKE and bottom shear are significantly larger compared to complex morphologies, since turbine arrays modify considerably the original flow conditions. Simulations also provide additional insights that are critical to evaluate the local impacts, showing the directionally-dependent flow resistance of tidal channels, in which the interactions with bathymetry change the downstream effects of turbine arrays in flood or ebb regimes.

Suggested Citation

  • Soto-Rivas, Karina & Richter, David & Escauriaza, Cristian, 2022. "Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile," Renewable Energy, Elsevier, vol. 195(C), pages 637-647.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:637-647
    DOI: 10.1016/j.renene.2022.05.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karina Soto-Rivas & David Richter & Cristian Escauriaza, 2019. "A Formulation of the Thrust Coefficient for Representing Finite-Sized Farms of Tidal Energy Converters," Energies, MDPI, vol. 12(20), pages 1-17, October.
    2. Hill, Craig & Musa, Mirko & Guala, Michele, 2016. "Interaction between instream axial flow hydrokinetic turbines and uni-directional flow bedforms," Renewable Energy, Elsevier, vol. 86(C), pages 409-421.
    3. Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
    4. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    5. Frost, Carwyn H. & Evans, Paul S. & Harrold, Magnus J. & Mason-Jones, Allan & O'Doherty, Tim & O'Doherty, Daphne M., 2017. "The impact of axial flow misalignment on a tidal turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1333-1344.
    6. Wang, Taiping & Yang, Zhaoqing, 2017. "A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 204-214.
    7. Fallon, D. & Hartnett, M. & Olbert, A. & Nash, S., 2014. "The effects of array configuration on the hydro-environmental impacts of tidal turbines," Renewable Energy, Elsevier, vol. 64(C), pages 10-25.
    8. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    9. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    10. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    11. Riglin, Jacob & Daskiran, Cosan & Jonas, Joseph & Schleicher, W. Chris & Oztekin, Alparslan, 2016. "Hydrokinetic turbine array characteristics for river applications and spatially restricted flows," Renewable Energy, Elsevier, vol. 97(C), pages 274-283.
    12. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    13. Yang, Zhaoqing & Wang, Taiping & Copping, Andrea E., 2013. "Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model," Renewable Energy, Elsevier, vol. 50(C), pages 605-613.
    14. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    15. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    16. Roc, Thomas & Conley, Daniel C. & Greaves, Deborah, 2013. "Methodology for tidal turbine representation in ocean circulation model," Renewable Energy, Elsevier, vol. 51(C), pages 448-464.
    17. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    18. Ladenburg, Jacob & Dubgaard, Alex, 2007. "Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark," Energy Policy, Elsevier, vol. 35(8), pages 4059-4071, August.
    19. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lin & Gu, Zeheng & Xu, Weixin & Tan, Yunfeng & Fan, Xinghua & Tan, Dapeng, 2023. "Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling," Energy, Elsevier, vol. 272(C).
    2. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    2. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    3. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    4. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).
    5. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    6. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    7. Marco Piano & Peter E. Robins & Alan G. Davies & Simon P. Neill, 2018. "The Influence of Intra-Array Wake Dynamics on Depth-Averaged Kinetic Tidal Turbine Energy Extraction Simulations," Energies, MDPI, vol. 11(10), pages 1-21, October.
    8. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
    9. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    10. Li, Xiaorong & Li, Ming & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D. & Song, Qingyang & Zheng, Peng & Simmons, Stephen M. & Jordan, Laura-Beth & McLelland, Stuart J., 2020. "Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 151(C), pages 956-965.
    11. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    12. Thiébot, Jérôme & Guillou, Nicolas & Guillou, Sylvain & Good, Andrew & Lewis, Michael, 2020. "Wake field study of tidal turbines under realistic flow conditions," Renewable Energy, Elsevier, vol. 151(C), pages 1196-1208.
    13. Ramírez-Mendoza, R. & Murdoch, L. & Jordan, L.B. & Amoudry, L.O. & McLelland, S. & Cooke, R.D. & Thorne, P. & Simmons, S.M. & Parsons, D. & Vezza, M., 2020. "Asymmetric effects of a modelled tidal turbine on the flow and seabed," Renewable Energy, Elsevier, vol. 159(C), pages 238-249.
    14. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
    15. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
    16. Karina Soto-Rivas & David Richter & Cristian Escauriaza, 2019. "A Formulation of the Thrust Coefficient for Representing Finite-Sized Farms of Tidal Energy Converters," Energies, MDPI, vol. 12(20), pages 1-17, October.
    17. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Cossu, Remo & Penesis, Irene, 2021. "Variability of sediment processes around a tidal farm in a theoretical channel," Renewable Energy, Elsevier, vol. 171(C), pages 606-620.
    18. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    19. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    20. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:637-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.