Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.11.096
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Malki, Rami & Masters, Ian & Williams, Alison J. & Nick Croft, T., 2014. "Planning tidal stream turbine array layouts using a coupled blade element momentum – computational fluid dynamics model," Renewable Energy, Elsevier, vol. 63(C), pages 46-54.
- Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
- Iyer, A.S. & Couch, S.J. & Harrison, G.P. & Wallace, A.R., 2013. "Variability and phasing of tidal current energy around the United Kingdom," Renewable Energy, Elsevier, vol. 51(C), pages 343-357.
- Chen, Long & Hashim, Roslan & Othman, Faridah & Motamedi, Shervin, 2017. "Experimental study on scour profile of pile-supported horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 744-754.
- Chen, Long & Lam, Wei-Haur, 2014. "Slipstream between marine current turbine and seabed," Energy, Elsevier, vol. 68(C), pages 801-810.
- De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
- Tedds, S.C. & Owen, I. & Poole, R.J., 2014. "Near-wake characteristics of a model horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 222-235.
- Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
- Sun, X. & Chick, J.P. & Bryden, I.G., 2008. "Laboratory-scale simulation of energy extraction from tidal currents," Renewable Energy, Elsevier, vol. 33(6), pages 1267-1274.
- Bai, X. & Avital, E.J. & Munjiza, A. & Williams, J.J.R., 2014. "Numerical simulation of a marine current turbine in free surface flow," Renewable Energy, Elsevier, vol. 63(C), pages 715-723.
- Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
- Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
- Ramírez-Mendoza, R. & Amoudry, L.O. & Thorne, P.D. & Cooke, R.D. & McLelland, S.J. & Jordan, L.B. & Simmons, S.M. & Parsons, D.R. & Murdoch, L., 2018. "Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics," Renewable Energy, Elsevier, vol. 129(PA), pages 271-284.
- Kramer, Stephan C. & Piggott, Matthew D., 2016. "A correction to the enhanced bottom drag parameterisation of tidal turbines," Renewable Energy, Elsevier, vol. 92(C), pages 385-396.
- Roc, Thomas & Conley, Daniel C. & Greaves, Deborah, 2013. "Methodology for tidal turbine representation in ocean circulation model," Renewable Energy, Elsevier, vol. 51(C), pages 448-464.
- Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
- Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
- Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Wu, Baigong & Zhan, Mingjing & Wu, Rujian & Zhang, Xiao, 2023. "The investigation of a coaxial twin-counter-rotating turbine with variable-pitch adaptive blades," Energy, Elsevier, vol. 267(C).
- Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
- Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
- Ramírez-Mendoza, R. & Murdoch, L. & Jordan, L.B. & Amoudry, L.O. & McLelland, S. & Cooke, R.D. & Thorne, P. & Simmons, S.M. & Parsons, D. & Vezza, M., 2020. "Asymmetric effects of a modelled tidal turbine on the flow and seabed," Renewable Energy, Elsevier, vol. 159(C), pages 238-249.
- Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
- Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
- Soto-Rivas, Karina & Richter, David & Escauriaza, Cristian, 2022. "Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile," Renewable Energy, Elsevier, vol. 195(C), pages 637-647.
- Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
- Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
- Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
- María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
- Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
- Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
- Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
- Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
- De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
- Ramos, V. & Carballo, R. & Ringwood, John V., 2019. "Application of the actuator disc theory of Delft3D-FLOW to model far-field hydrodynamic impacts of tidal turbines," Renewable Energy, Elsevier, vol. 139(C), pages 1320-1335.
- Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
- Nasteho Djama Dirieh & Jérôme Thiébot & Sylvain Guillou & Nicolas Guillou, 2022. "Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race," Energies, MDPI, vol. 15(10), pages 1-18, May.
- Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
- Lo Brutto, Ottavio A. & Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2016. "Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio," Renewable Energy, Elsevier, vol. 99(C), pages 347-359.
More about this item
Keywords
Tidal stream energy; Three-dimensional modelling; Suspended sediment transport; Mixing enhancement; Additional shear stress;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:956-965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.