IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223004097.html
   My bibliography  Save this article

Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling

Author

Listed:
  • Li, Lin
  • Gu, Zeheng
  • Xu, Weixin
  • Tan, Yunfeng
  • Fan, Xinghua
  • Tan, Dapeng

Abstract

Mixing mass transfer process of the gas-liquid-solid multiphase flow is a crucial manufacturing technology in some industrial applications, such as the material mixing of the high-end chemical industry and the lithium electric homogenate dispersion of the new energy. The complicated multiphase mass transfer mechanism is a fluid-structure coupling mechanic problem with intensive shear and nonlinear characteristics, making the flow field face challenges in regulating. Here, a fluid-structure coupling-based mechanic model is set up based on the coupled volume-of-fluid and discrete element model (VOF-DEM) to explore the multiphase mixing mass transfer mechanism. A porous interphase optimization and dynamic mesh technique are proposed to reveal flow pattern regularities under the inflating disturbance. Then, an experimental observation platform is built, and the fractal geometric analysis method is utilized to reveal the chaotic evolution property. Research results illustrate that the presented modelling method can well obtain the multiphase mixing mass transfer regularities. The appropriate inflation rate can improve particle suspension effects, and promote interphase mixing mass transfer, and achieve the dynamic control of the multiphase flow filed. The results can provide a valuable reference for mass transfer and flow pattern identification and support technical support for lithium electric homogenate mixing and chemical extraction.

Suggested Citation

  • Li, Lin & Gu, Zeheng & Xu, Weixin & Tan, Yunfeng & Fan, Xinghua & Tan, Dapeng, 2023. "Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223004097
    DOI: 10.1016/j.energy.2023.127015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    2. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    3. Li, Lin & Tan, Dapeng & Wang, Tong & Yin, Zichao & Fan, Xinghua & Wang, Ronghui, 2021. "Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method," Energy, Elsevier, vol. 216(C).
    4. Zhang, Baoshou & Li, Boyang & Fu, Song & Mao, Zhaoyong & Ding, Wenjun, 2022. "Vortex-Induced Vibration (VIV) hydrokinetic energy harvesting based on nonlinear damping," Renewable Energy, Elsevier, vol. 195(C), pages 1050-1063.
    5. Soto-Rivas, Karina & Richter, David & Escauriaza, Cristian, 2022. "Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile," Renewable Energy, Elsevier, vol. 195(C), pages 637-647.
    6. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
    7. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    8. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
    9. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    10. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Zhe & Yao, Qiwei & Jin, Huaqiang & Xu, Yingjie & Hang, Wei & Chen, Hongyu & Li, Kang & Shi, Ling & Gu, Jiangping & Zhang, Qinjian & Shen, Xi, 2024. "A novel in-situ sensor calibration method for building thermal systems based on virtual samples and autoencoder," Energy, Elsevier, vol. 297(C).
    2. Jan Górecki & Maciej Berdychowski & Elżbieta Gawrońska & Krzysztof Wałęsa, 2023. "Influence of PPD and Mass Scaling Parameter on the Goodness of Fit of Dry Ice Compaction Curve Obtained in Numerical Simulations Utilizing Smoothed Particle Method (SPH) for Improving the Energy Effic," Energies, MDPI, vol. 16(20), pages 1-12, October.
    3. Yixin Yao & Yaqian Zheng & Yan Yang, 2023. "Numerical Simulation of Energy and Mass Transfer in a Magnetic Stirring Photocatalytic Reactor," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    4. Li, Lin & Li, Qihan & Ni, Yesha & Wang, Chengyan & Tan, Yunfeng & Tan, Dapeng, 2024. "Critical penetrating vibration evolution behaviors of the gas-liquid coupled vortex flow," Energy, Elsevier, vol. 292(C).
    5. Wu, Jiafeng & Li, Lin & Yin, Zichao & Li, Zhe & Wang, Tong & Tan, Yunfeng & Tan, Dapeng, 2024. "Mass transfer mechanism of multiphase shear flows and interphase optimization solving method," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Lin & Li, Qihan & Ni, Yesha & Wang, Chengyan & Tan, Yunfeng & Tan, Dapeng, 2024. "Critical penetrating vibration evolution behaviors of the gas-liquid coupled vortex flow," Energy, Elsevier, vol. 292(C).
    2. Jiaxing Wang & Sibin Gao & Zhejun Tang & Dapeng Tan & Bin Cao & Jing Fan, 2023. "A context-aware recommendation system for improving manufacturing process modeling," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1347-1368, March.
    3. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    4. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    5. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
    6. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    7. Yulong Wang & Yaran Lv & Baozhan Lv & Ying Zhang, 2022. "Modeling, Simulation and Analysis of Intermediate Fixed Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(9), pages 1-13, April.
    8. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Yurchenko, Daniil & Wolszczak, Piotr & Dymarek, Andrzej & Dzitkowski, Tomasz, 2023. "Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Wang, Guotai & Song, Rujun & Luo, Lianjian & Yu, Pengbo & Yang, Xiaohui & Zhang, Leian, 2024. "Multi-piezoelectric energy harvesters array based on wind-induced vibration: Design, simulation, and experimental evaluation," Energy, Elsevier, vol. 300(C).
    10. Hongyuan Sun & Jiazheng Wang & Haihua Lin & Guanghua He & Zhigang Zhang & Bo Gao & Bo Jiao, 2022. "Numerical Study on a Cylinder Vibrator in the Hydrodynamics of a Wind–Wave Combined Power Generation System under Different Mass Ratios," Energies, MDPI, vol. 15(24), pages 1-16, December.
    11. Li, Jianwei & Wang, Guotai & Yang, Panpan & Wen, Yongshuang & Zhang, Leian & Song, Rujun & Hou, Chengwei, 2024. "An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration," Energy, Elsevier, vol. 286(C).
    12. Zhang, Haiwei & Qin, Weiyang & Zhou, Zhiyong & Zhu, Pei & Du, Wenfeng, 2023. "Piezomagnetoelastic energy harvesting from bridge vibrations using bi-stable characteristics," Energy, Elsevier, vol. 263(PC).
    13. Shi, Weijie & Chen, Chen & Yang, Chuanhui & Xian, Tongrui & Luo, Xiaohui & Zhao, Haixia, 2023. "Experimental and simulation study of a hydraulic piezoelectric energy harvester under different connection modes," Energy, Elsevier, vol. 281(C).
    14. He, Lipeng & Han, Yuhang & Liu, Renwen & Hu, Renhui & Yu, Gang & Cheng, Guangming, 2022. "Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure," Energy, Elsevier, vol. 256(C).
    15. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    16. Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
    17. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    18. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    19. Man Ge & Gaoan Zheng, 2024. "Fluid–Solid Mixing Transfer Mechanism and Flow Patterns of the Double-Layered Impeller Stirring Tank by the CFD-DEM Method," Energies, MDPI, vol. 17(7), pages 1-16, March.
    20. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223004097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.