IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp1062-1073.html
   My bibliography  Save this article

Enhancement of solar absorption performance using TiN@SiCw plasmonic nanofluids for effective photo-thermal conversion: Numerical and experimental investigation

Author

Listed:
  • Wen, Jin
  • Li, Xiaoke
  • Zhang, He
  • Chen, Meijie
  • Wu, Xiaohu

Abstract

The heat exchange medium moderately determines the heat utilization efficiency of solar energy. Nanofluids, a type of working fluids with high thermal conductivity and strong light absorption, have been studied and applied to improve solar energy utilization. In this study, TiN@SiCw binary composite nanoparticles were prepared by a coupling agent method. The optical coupling absorption properties of TiN and SiCw nanoparticles were numerically simulated by the finite-difference time-domain method. Results showed the TiN@SiCw nanostructure can improve the width and intensity of spectral absorption. Then TiN@SiCw and SiCw nanofluids based on ethylene glycol were prepared by a two-step method and studied experimentally in terms of thermal conductivity and optical absorption. The photothermal conversion efficiency of the nanofluids was measured by a special flow and photothermal coupling model (side radiation). Experiments showed the thermal conductivity and light absorption of TiN@SiCw composite nanofluids were stronger than those of SiCw single-component nanofluids and the base fluid. Specifically, the energy absorption fraction and the photo-thermal efficiency of TiN@SiCw nanofluids at the highest concentration of 140 ppm were 96.2% and 90.5%, respectively, which were 12.1% and 21.7% higher respectively compared with SiCw nanofluids. Hence, the TiN@SiCw nanofluids are suitable for enhancing the efficiency of solar collectors.

Suggested Citation

  • Wen, Jin & Li, Xiaoke & Zhang, He & Chen, Meijie & Wu, Xiaohu, 2022. "Enhancement of solar absorption performance using TiN@SiCw plasmonic nanofluids for effective photo-thermal conversion: Numerical and experimental investigation," Renewable Energy, Elsevier, vol. 193(C), pages 1062-1073.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1062-1073
    DOI: 10.1016/j.renene.2022.05.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    2. Li, Dong & Wu, Yangyang & Zhang, Guojun & Arıcı, Müslüm & Liu, Changyu & Wang, Fuqiang, 2018. "Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption," Applied Energy, Elsevier, vol. 222(C), pages 343-350.
    3. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
    4. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
    5. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    6. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    7. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
    2. Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
    3. Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
    4. Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    4. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    5. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    6. Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
    7. Gupta, Varun Kumar & Kumar, Sanjay & Kukreja, Rajeev & Chander, Nikhil, 2023. "Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves," Renewable Energy, Elsevier, vol. 202(C), pages 1021-1031.
    8. Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.
    9. Liu, Changhui & Qiao, Yu & Du, Peixing & Zhang, Jiahao & Zhao, Jiateng & Liu, Chenzhen & Huo, Yutao & Qi, Cong & Rao, Zhonghao & Yan, Yuying, 2021. "Recent advances of nanofluids in micro/nano scale energy transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    11. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    12. Firas A. Alwawi & Feras M. Al Faqih & Mohammed Z. Swalmeh & Mohd Asrul Hery Ibrahim, 2022. "Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    13. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    14. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
    15. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    16. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    17. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    18. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    19. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    20. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1062-1073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.