IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp537-549.html
   My bibliography  Save this article

Mixing assessment of an industrial anaerobic digestion reactor using CFD

Author

Listed:
  • Zamani Abyaneh, Ehsan
  • Zarghami, Reza
  • Krühne, Ulrich
  • Rosinha Grundtvig, Inês P.
  • Ramin, Pedram
  • Mostoufi, Navid

Abstract

A computational fluid dynamic model was developed for an industrial anaerobic digestion reactor to assess its mixing efficiency. The mixing was evaluated by inspecting different parameters, including velocity patterns, dead zones and residence time distribution (RTD). Single-phase simulations were conducted considering and neglecting the presence of solids content and its effect on the viscosity of the slurry. The fluid was considered Newtonian in the absence of solids and non-Newtonian when solids were present. Dead zones were observed in both mixing and expanded sludge bed sections. These zones comprised, respectively, 49 vol % and 10 vol % of the mixing section and the expanded sludge bed section. The formation of the dead zones can be attributed to inefficiency of the mixing section in pumping flow upward into the middle of the reactor, especially, near the internal circulation pipe. Hence, a modification considering the discussed reasons would be beneficial to avoid the formation of dead zones. In addition, a compartment model representing the RTD is proposed, in which different patterns of plug flow, continuous mixed zones, dead volumes and recycle flow are considered.

Suggested Citation

  • Zamani Abyaneh, Ehsan & Zarghami, Reza & Krühne, Ulrich & Rosinha Grundtvig, Inês P. & Ramin, Pedram & Mostoufi, Navid, 2022. "Mixing assessment of an industrial anaerobic digestion reactor using CFD," Renewable Energy, Elsevier, vol. 192(C), pages 537-549.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:537-549
    DOI: 10.1016/j.renene.2022.04.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonzio, Grazia, 2018. "Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis," Renewable Energy, Elsevier, vol. 123(C), pages 578-589.
    2. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2021. "Energy performance of an unmixed anaerobic digester with submerged solid waste: Effects of temperature distribution," Energy, Elsevier, vol. 231(C).
    2. Leonzio, Grazia, 2019. "Fluid dynamic study of anaerobic digester: optimization of mixing and geometric configuration by using response surface methodology and factorial design," Renewable Energy, Elsevier, vol. 136(C), pages 769-780.
    3. Buta Singh & Narinder Singh & Zsolt Čonka & Michal Kolcun & Zoltán Siménfalvi & Zsolt Péter & Zoltán Szamosi, 2021. "Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    4. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Duarte, M. Salomé & Sinisgalli, Erika & Cavaleiro, Ana J. & Bertin, Lorenzo & Alves, M. Madalena & Pereira, M. Alcina, 2021. "Intensification of methane production from waste frying oil in a biogas-lift bioreactor," Renewable Energy, Elsevier, vol. 168(C), pages 1141-1148.
    6. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    7. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    8. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    9. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. John J. Milledge & Birthe V. Nielsen & Manar S. Sadek & Patricia J. Harvey, 2018. "Effect of Freshwater Washing Pretreatment on Sargassum muticum as a Feedstock for Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    11. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    13. Kozłowski, Kamil & Pietrzykowski, Maciej & Czekała, Wojciech & Dach, Jacek & Kowalczyk-Juśko, Alina & Jóźwiakowski, Krzysztof & Brzoski, Michał, 2019. "Energetic and economic analysis of biogas plant with using the dairy industry waste," Energy, Elsevier, vol. 183(C), pages 1023-1031.
    14. Mulka, Rafał & Szulczewski, Wiesław & Szlachta, Józef & Mulka, Mariusz, 2016. "Estimation of methane production for batch technology – A new approach," Renewable Energy, Elsevier, vol. 90(C), pages 440-449.
    15. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    16. Haorui Zhang & Jiaolin Li & Quanguo Zhang & Shengnan Zhu & Shuai Yang & Zhiping Zhang, 2020. "Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation," Sustainability, MDPI, vol. 12(7), pages 1-8, March.
    17. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    18. Józef Szlachta & Hubert Prask & Małgorzata Fugol & Adam Luberański, 2018. "Effect of Mechanical Pre-Treatment of the Agricultural Substrates on Yield of Biogas and Kinetics of Anaerobic Digestion," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    19. Vinardell, S. & Astals, S. & Peces, M. & Cardete, M.A. & Fernández, I. & Mata-Alvarez, J. & Dosta, J., 2020. "Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Willeghems, Gwen & Buysse, Jeroen, 2016. "Changing old habits: The case of feeding patterns in anaerobic digesters," Renewable Energy, Elsevier, vol. 92(C), pages 212-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.