IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp107-117.html
   My bibliography  Save this article

Promoting the conversion of poplar to bio-oil based on the synergistic effect of alkaline hydrogen peroxide

Author

Listed:
  • Wu, Haijun
  • Li, Xinlong
  • Zhang, Quan
  • Zhang, Kai
  • Xu, Xia
  • Xu, Jian

Abstract

The synergistic catalysis effect of NaOH and H2O2 on the hydrothermal liquefaction (HTL) of poplar was investigated and compared to the NaOH or H2O2 catalyzed HTL at different temperatures and 30 min residence time. GC-MS, GPC, FT-IR, HPLC and TGA were used to comprehensively characterize the physical and chemical properties of liquefied products (bio-oil, lignin and solid residue). The results showed that the highest total bio-oil yield (70.65%) was obtained at 280 °C with NaOH (35 g/L)/H2O2 (30 g/L) as catalysts. The average molecular weight and polydispersity index (PDI) were found to be lower compared to that from other conditions. As the NaOH concentration was increased, the bio-oil yield was improved. The concentration of H2O2 for the optimal synergistic effect was observed to be 30 g/L. GC-MS analysis showed that the bio-oil obtained by NaOH (35 g/L)/H2O2 (30 g/L) was characterized with the lowest N content. The synergistic effect promoted the higher production selectivity of o-xylene and p-xylene in the bio-oil.

Suggested Citation

  • Wu, Haijun & Li, Xinlong & Zhang, Quan & Zhang, Kai & Xu, Xia & Xu, Jian, 2022. "Promoting the conversion of poplar to bio-oil based on the synergistic effect of alkaline hydrogen peroxide," Renewable Energy, Elsevier, vol. 192(C), pages 107-117.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:107-117
    DOI: 10.1016/j.renene.2022.04.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    2. Kim, Seong Ju & Um, Byung Hwan, 2020. "Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 612-622.
    3. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    5. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    6. Biswas, Bijoy & Kumar, Avnish & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds," Renewable Energy, Elsevier, vol. 175(C), pages 270-280.
    7. Kaur, Ravneet & Gera, Poonam & Jha, Mithilesh Kumar & Bhaskar, Thallada, 2019. "Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis) residue for energy and valuable hydrocarbons recovery," Renewable Energy, Elsevier, vol. 141(C), pages 1026-1041.
    8. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Haijun & Shakeel, Usama & Zhang, Quan & Zhang, Kai & Xu, Xia & Yuan, Yamei & Xu, Jian, 2022. "Catalytic degradation of poplar by Na2CO3 and Na2CO3/Fe under various hydrothermal liquefaction processes," Energy, Elsevier, vol. 259(C).
    2. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    4. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Zhao, Kaige & Li, Wanqing & Yu, Yingying & Chen, Guanyi & Yan, Beibei & Cheng, Zhanjun & Zhao, Hai & Fang, Yang, 2023. "Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 661-670.
    6. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    10. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    11. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Radhakrishnan, Rokesh & Manna, Bharat & Ghosh, Amit, 2023. "Molecular insights into dissolution of lignin bunch in ionic liquid-water mixture for enhanced biomass conversion," Renewable Energy, Elsevier, vol. 206(C), pages 47-59.
    13. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    14. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    15. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    16. Yan-Jhang Chen & Tang-Yu Fan & Li-Pang Wang & Ta-Wui Cheng & Shiao-Shing Chen & Min-Hao Yuan & Shikun Cheng, 2020. "Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    17. Kim, Seong Ju & Um, Byung Hwan, 2020. "Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 612-622.
    18. Lakshmikandan, M. & Murugesan, A.G. & Wang, Shuang & El-Fatah Abomohra, Abd, 2021. "Optimization of acid hydrolysis on the green seaweed Valoniopsis pachynema and approach towards mixotrophic microalgal biomass and lipid production," Renewable Energy, Elsevier, vol. 164(C), pages 1052-1061.
    19. Yang, Tianhua & Du, Chongzhen & Li, Bingshuo & Liu, Zheng & Kai, Xingping, 2022. "Influence of alkali and alkaline earth metals on the hydrothermal liquefaction of lignocellulosic model compounds," Renewable Energy, Elsevier, vol. 188(C), pages 1038-1048.
    20. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:107-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.