IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp805-821.html
   My bibliography  Save this article

Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa

Author

Listed:
  • Dianat, Fateme
  • Khodakarami, Vahid
  • Hosseini, Seyed-Hossein
  • Shakouri G, Hamed

Abstract

Renewable electricity development is not a critical concern in fossil-fuel-rich countries in the Middle East and North Africa, where fossil fuels are abundant and accessible. As a result, the growth of fossil-fuel electricity generators reduces renewable electricity competitiveness and slows its development. Since renewable electricity has an insufficient market share (less than 5% of total electricity generation in these countries, according to global statistics), its development should become a priority due to fossil-fuel depletion and demand growth in the future. The present study investigates various scenarios to examine the energy sector's development in countries facing severe competitiveness challenges of renewable electricity. Then, it recommends the most appropriate policies through evaluating the proposed plans' effectiveness. In this regard, a comprehensive framework has been developed by integrating system dynamics modeling, agent-based modeling logic, and game theory concepts. This systemic modeling procedure has several advantages, including formation of a macro policymaking perspective, the analysis of renewable electricity development trends, and the simulation of competitors' and investors' reactions and decisions. In this case, Iran is chosen for the study due to being a representative of these countries, and its data have been used to validate the proposed model. Model validation showed less than 9% error between simulation results and real data. Besides, the simulation results indicated that establishing a competitive market and enacting targeted support policies could stimulate the development of renewable electricity up to the year 2060. A presumed combined policy based on efficient simulated scenarios could increase renewable electricity capacity and market share 5-fold and 6-fold by 2035, respectively. Also, it could improve capacity and market share 8-fold and 10-fold by 2060, respectively.

Suggested Citation

  • Dianat, Fateme & Khodakarami, Vahid & Hosseini, Seyed-Hossein & Shakouri G, Hamed, 2022. "Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa," Renewable Energy, Elsevier, vol. 190(C), pages 805-821.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:805-821
    DOI: 10.1016/j.renene.2022.03.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahmohammadi, M. Sadegh & Mohd. Yusuff, Rosnah & Keyhanian, Sina & Shakouri G., Hamed, 2015. "A decision support system for evaluating effects of Feed-in Tariff mechanism: Dynamic modeling of Malaysia’s electricity generation mix," Applied Energy, Elsevier, vol. 146(C), pages 217-229.
    2. Wallentin, Gudrun & Neuwirth, Christian, 2017. "Dynamic hybrid modelling: Switching between AB and SD designs of a predator-prey model," Ecological Modelling, Elsevier, vol. 345(C), pages 165-175.
    3. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    4. Alishahi, E. & Moghaddam, M. Parsa & Sheikh-El-Eslami, M.K., 2012. "A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment," Renewable Energy, Elsevier, vol. 37(1), pages 310-317.
    5. Vincenot, Christian Ernest & Giannino, Francesco & Rietkerk, Max & Moriya, Kazuyuki & Mazzoleni, Stefano, 2011. "Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology," Ecological Modelling, Elsevier, vol. 222(1), pages 210-218.
    6. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Moslem Mousavi, Sayed & Bagheri Ghanbarabadi, Morteza & Bagheri Moghadam, Naser, 2012. "The competitiveness of wind power compared to existing methods of electricity generation in Iran," Energy Policy, Elsevier, vol. 42(C), pages 651-656.
    8. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
    9. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    10. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    11. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.
    12. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    13. BenDor, Todd & Scheffran, Jürgen & Hannon, Bruce, 2009. "Ecological and economic sustainability in fishery management: A multi-agent model for understanding competition and cooperation," Ecological Economics, Elsevier, vol. 68(4), pages 1061-1073, February.
    14. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    15. Ford, Andrew & Vogstad, Klaus & Flynn, Hilary, 2007. "Simulating price patterns for tradable green certificates to promote electricity generation from wind," Energy Policy, Elsevier, vol. 35(1), pages 91-111, January.
    16. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    17. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    18. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    19. Gary, Shayne & Larsen, Erik Reimer, 2000. "Improving firm performance in out-of-equilibrium, deregulated markets using feedback simulation models," Energy Policy, Elsevier, vol. 28(12), pages 845-855, October.
    20. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    21. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    22. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    23. Hsu, Chiung-Wen, 2012. "Using a system dynamics model to assess the effects of capital subsidies and feed-in tariffs on solar PV installations," Applied Energy, Elsevier, vol. 100(C), pages 205-217.
    24. Kehong Li & Wenke Wang & Yadong Zhang & Tao Zheng & Jin Guo, 2019. "Game Modelling and Strategy Research on the System Dynamics–Based Quadruplicate Evolution for High–Speed Railway Operational Safety Supervision System," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    25. Olsina, Fernando & Garces, Francisco & Haubrich, H.-J., 2006. "Modeling long-term dynamics of electricity markets," Energy Policy, Elsevier, vol. 34(12), pages 1411-1433, August.
    26. Xin-gang Zhao & Yu-zhuo Zhang, 2018. "The System Dynamics (SD) Analysis of the Government and Power Producers’ Evolutionary Game Strategies Based on Carbon Trading (CT) Mechanism: A Case of China," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    27. Bagheri Moghaddam, Nasser & Mousavi, Sayyed Moslem & Nasiri, Masoud & Moallemi, Enayat A. & Yousefdehi, Hami, 2011. "Wind energy status of Iran: Evaluating Iran's technological capability in manufacturing wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4200-4211.
    28. Milad Mousavian, H. & Hamed Shakouri, G. & Mashayekhi, Ali-Naghi & Kazemi, Aliyeh, 2020. "Does the short-term boost of renewable energies guarantee their stable long-term growth? Assessment of the dynamics of feed-in tariff policy," Renewable Energy, Elsevier, vol. 159(C), pages 1252-1268.
    29. Park, Jung-Yeon & Ahn, Nam-Sung & Yoon, Yong-Beum & Koh, Kyung-Ho & Bunn, Derek W., 2007. "Investment incentives in the Korean electricity market," Energy Policy, Elsevier, vol. 35(11), pages 5819-5828, November.
    30. Dyner, Isaac & Larsen, Erik R., 2001. "From planning to strategy in the electricity industry," Energy Policy, Elsevier, vol. 29(13), pages 1145-1154, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaorui & Guo, Wen & Feng, Qiang & Wang, Peng, 2022. "Spatial correlation, driving factors and dynamic spatial spillover of electricity consumption in China: A perspective on industry heterogeneity," Energy, Elsevier, vol. 257(C).
    2. Zhang, Yan & Wang, Si-Xia & Yao, Jian-Ting & Tong, Rui-Peng, 2023. "The impact of behavior safety management system on coal mine work safety: A system dynamics model of quadripartite evolutionary game," Resources Policy, Elsevier, vol. 82(C).
    3. Karbasioun, Matin & Gholamalipour, Afshin & Safaie, Nasser & Shirazizadeh, Rasool & Amidpour, Majid, 2023. "Developing sustainable power systems by evaluating techno-economic, environmental, and social indicators from a system dynamics approach," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Mousavian, H. & Hamed Shakouri, G. & Mashayekhi, Ali-Naghi & Kazemi, Aliyeh, 2020. "Does the short-term boost of renewable energies guarantee their stable long-term growth? Assessment of the dynamics of feed-in tariff policy," Renewable Energy, Elsevier, vol. 159(C), pages 1252-1268.
    2. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    3. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    4. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2013. "Dynamic analysis of various investment incentives and regional capacity assignment in Iranian electricity market," Energy Policy, Elsevier, vol. 56(C), pages 271-284.
    6. Xin-gang, Zhao & Wei, Wang & Ling, Wu, 2021. "A dynamic analysis of research and development incentive on China's photovoltaic industry based on system dynamics model," Energy, Elsevier, vol. 233(C).
    7. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    8. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
    9. Hary, Nicolas & Rious, Vincent & Saguan, Marcelo, 2016. "The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 91(C), pages 113-127.
    10. Hasani, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms," Energy, Elsevier, vol. 36(1), pages 277-293.
    11. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    12. Ye, Liang-Cheng & Rodrigues, João F.D. & Lin, Hai Xiang, 2017. "Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016," Applied Energy, Elsevier, vol. 203(C), pages 496-505.
    13. Karbasioun, Matin & Gholamalipour, Afshin & Safaie, Nasser & Shirazizadeh, Rasool & Amidpour, Majid, 2023. "Developing sustainable power systems by evaluating techno-economic, environmental, and social indicators from a system dynamics approach," Utilities Policy, Elsevier, vol. 82(C).
    14. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power," Renewable Energy, Elsevier, vol. 36(8), pages 2205-2219.
    15. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    16. Izzet Alp Gul & Gülgün Kayakutlu & M. Özgür Kayalica, 2020. "Risk Analysis in Renewable Energy System (RES) Investment for a Developing Country: A Case Study in Pakistan," Arthaniti: Journal of Economic Theory and Practice, , vol. 19(2), pages 204-223, December.
    17. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    18. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    19. Petitet, Marie & Finon, Dominique & Janssen, Tanguy, 2017. "Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism," Energy Policy, Elsevier, vol. 103(C), pages 30-46.
    20. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:805-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.