IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v164y2022ics0301421522001045.html
   My bibliography  Save this article

Assessing energy transition costs: Sub-national challenges in Canada

Author

Listed:
  • Stringer, Thomas
  • Joanis, Marcelin

Abstract

Transitioning from non-renewable sources of energy to renewable ones is an important theme in any national government's energy policy nowadays. However, the investments required for such a transition are often said to be quite costly. In Canada, previous research has shown that a transition is economically feasible at the national level, but is an energy transition equally as feasible for each of Canada's provinces? This paper uses energy use simulation data and a costing model to assess the infrastructure expenditures for a carbon-neutral transition for each of the country's ten provinces from now until 2060. By calculating the costs for five different scenarios and taking into account the savings incurred by lower fossil fuel consumption post-transition, we find that most of Canada's provinces stands to gain from a pan-Canadian energy transition by each capturing fossil fuel savings. We also find that generally, provinces that produce electricity using fossil fuels are set to benefit from more savings following a transition than provinces that currently produce electricity using renewable sources.

Suggested Citation

  • Stringer, Thomas & Joanis, Marcelin, 2022. "Assessing energy transition costs: Sub-national challenges in Canada," Energy Policy, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522001045
    DOI: 10.1016/j.enpol.2022.112879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522001045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blazejczak, Jürgen & Braun, Frauke G. & Edler, Dietmar & Schill, Wolf-Peter, 2014. "Economic effects of renewable energy expansion: A model-based analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1070-1080.
    2. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    3. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    5. Marcelin Joanis & François Vaillancourt, 2020. "Federal finance arrangements in Canada: the challenges of fiscal imbalance and natural resource rents," Chapters, in: Serdar Yilmaz & Farah Zahir (ed.), Intergovernmental Transfers in Federations, chapter 7, pages 109-133, Edward Elgar Publishing.
    6. Dolter, Brett & Rivers, Nicholas, 2018. "The cost of decarbonizing the Canadian electricity system," Energy Policy, Elsevier, vol. 113(C), pages 135-148.
    7. Geoffrey Heal, 2022. "Economic Aspects of the Energy Transition," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 5-21, September.
    8. Mark A. Andor, Manuel Frondel, and Colin Vance, 2017. "Germanys Energiewende: A Tale of Increasing Costs and Decreasing Willingness-To-Pay," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    9. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    10. Pineau, Pierre-Olivier & Hira, Anil & Froschauer, Karl, 2004. "Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA," Energy Policy, Elsevier, vol. 32(13), pages 1457-1475, September.
    11. Billette de Villemeur, Etienne & Pineau, Pierre-Olivier, 2012. "Regulation and electricity market integration: When trade introduces inefficiencies," Energy Economics, Elsevier, vol. 34(2), pages 529-535.
    12. Siddiqui, Sauleh & Vaillancourt, Kathleen & Bahn, Olivier & Victor, Nadejda & Nichols, Christopher & Avraam, Charalampos & Brown, Maxwell, 2020. "Integrated North American energy markets under different futures of cross-border energy infrastructure," Energy Policy, Elsevier, vol. 144(C).
    13. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    14. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    15. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    16. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beckmann, Jonas & Klöckner, Kai & Letmathe, Peter, 2024. "Scenario-based multi-criteria evaluation of sector coupling-based technology pathways for decarbonization with varying degrees of disruption," Energy, Elsevier, vol. 297(C).
    2. Stringer, Thomas & Joanis, Marcelin & Abdoli, Shiva, 2024. "Power generation mix and electricity price," Renewable Energy, Elsevier, vol. 221(C).
    3. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Stringer, Thomas & Joanis, Marcelin, 2023. "Decarbonizing Canada's remote microgrids," Energy, Elsevier, vol. 264(C).
    5. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Anna Komarova, 2022. "State Regulation of Energy Transition and Economic Development," Energies, MDPI, vol. 15(12), pages 1-13, June.
    7. Hou, Bingdong & Wu, Jingwen & Mi, Zhifu & Ma, Chunbo & Shi, Xunpeng & Liao, Hua, 2022. "Cooking fuel types and the health effects: A field study in China," Energy Policy, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stringer, Thomas & Joanis, Marcelin, 2023. "Decarbonizing Canada's remote microgrids," Energy, Elsevier, vol. 264(C).
    2. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    3. Halil Burak Sakal, 2021. "Turkey’s energy trade relations with Europe: The role of institutions and energy market," Energy & Environment, , vol. 32(7), pages 1243-1274, November.
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Duscha, Vicki & Fougeyrollas, Arnaud & Nathani, Carsten & Pfaff, Matthias & Ragwitz, Mario & Resch, Gustav & Schade, Wolfgang & Breitschopf, Barbara & Walz, Rainer, 2016. "Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend," Energy Policy, Elsevier, vol. 95(C), pages 314-323.
    6. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena, 2018. "The employment impact of private and public actions for energy efficiency: Evidence from European industries," Energy Policy, Elsevier, vol. 119(C), pages 250-267.
    7. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Raitano, Michele & Romano, Eleonora & Zoppoli, Pietro, 2017. "Renewable energy sources in Italy: Sectorial intensity and effects on earnings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 117-127.
    9. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    10. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
    11. Sievers, Luisa & Schaffer, Axel, 2016. "The impacts of the German biofuel quota on sectoral domestic production and imports of the German economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 497-505.
    12. Khajehpour, Hossein & Miremadi, Iman & Saboohi, Yadollah & Tsatsaronis, George, 2020. "A novel approach for analyzing the effectiveness of the R&D capital for resource conservation: Comparative study on Germany and UK electricity sectors," Energy Policy, Elsevier, vol. 147(C).
    13. Arouri, Mohamed El Hedi & Ben-Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2014. "Exploring the Causality Links between Energy and Employment in African Countries," IZA Discussion Papers 8296, Institute of Labor Economics (IZA).
    14. Maciej Ciołek & Izabela Emerling & Katarzyna Olejko & Beata Sadowska & Magdalena Wójcik-Jurkiewicz, 2022. "Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study," Energies, MDPI, vol. 15(5), pages 1-18, March.
    15. O'Sullivan, Marlene & Edler, Dietmar, 2020. "Gross Employment Effects in the Renewable Energy Industry in Germany : An Input–Output Analysis from 2000 to 2018," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15).
    16. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    17. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    18. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    19. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Feasibility and Economic Impacts of the Energy Transition," Sustainability, MDPI, vol. 13(10), pages 1-34, May.
    20. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522001045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.