IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp709-727.html
   My bibliography  Save this article

Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine

Author

Listed:
  • Li, Haoran
  • Bachynski, Erin E.

Abstract

In a severe sea state, nonlinear wave loads can excite resonant responses of floating wind turbines either at high (structural) or low (rigid body motions) natural frequencies. In the present work, a computational fluid dynamics (CFD) model and an engineering model based on potential-flow theory with Morison-type drag are developed to investigate nonlinear wave loads on a stationary, rigid semi-submersible wind turbine under regular and irregular waves. The numerical results are validated against experimental measurements. A trimmed floater is modelled to examine the change in nonlinear wave loads due to the mean pitch angle which occurs during operation of a floating wind turbine. Furthermore, wave loads on each column are investigated numerically. Compared to the experimental measurements, the CFD model gives better estimations than the engineering model for the first, second and third order wave diffraction loads. The engineering model based on the first- and second-order potential-flow theory has large discrepancies in the phase of high order wave diffraction loads and underpredicts the amplitude of low-frequency wave loads. In the CFD simulations for the studied wave period (12.1 s), the second and third harmonic surge forces on the starboard columns are significantly larger than those on the upstream column, while first harmonic results are consistent with potential flow. The trim angle (5°) results in an increasing surge force and pitch moment but a decreasing heave force.

Suggested Citation

  • Li, Haoran & Bachynski, Erin E., 2021. "Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine," Renewable Energy, Elsevier, vol. 171(C), pages 709-727.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:709-727
    DOI: 10.1016/j.renene.2021.02.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Fan, Xiaoxu, 2022. "Experimental investigation on the dynamic response of an innovative semi-submersible floating wind turbine with aquaculture cages," Renewable Energy, Elsevier, vol. 200(C), pages 1393-1415.
    2. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    3. Wang, Lu & Robertson, Amy & Jonkman, Jason & Yu, Yi-Hsiang, 2022. "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform," Renewable Energy, Elsevier, vol. 187(C), pages 282-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:709-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.