IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp571-579.html
   My bibliography  Save this article

Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction

Author

Listed:
  • Son, Daewoong
  • Yeung, Ronald W.

Abstract

To accommodate ocean-wave energy extraction in a wide operating range of sea-states, a nonlinear model predictive control (NMPC) methodology was applied to a lab-scale dual coaxial-cylinder wave-energy converter (WEC), coupled with a permanent-magnet linear generator (PMLG) as the power take-off (PTO). The paper focuses on the experimental implementation of the optimal damping control of the PMLG as guided by the NMPC process, which yielded intermediate values of damping subjected to prescribed damping capacity. This damping behavior was implemented electronically in the coupled PTO-WEC system by employing a solid-state relay (SSR) with pulse-width modulation (PWM) technique so as to mimic analog current flow. The effectiveness of the combination of SSR and PWM was demonstrated. Successful real-time lab-scale testing in regular and irregular waves was experimentally confirmed. Peak values of energy capture and a broadened bandwidth were favorably improved compared to those obtained using just constant, non-time-varying damping control.

Suggested Citation

  • Son, Daewoong & Yeung, Ronald W., 2017. "Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction," Applied Energy, Elsevier, vol. 208(C), pages 571-579.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:571-579
    DOI: 10.1016/j.apenergy.2017.09.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    2. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
    3. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    4. Huang, Sy-Ruen & Chen, Hong-Tai & Chung, Chih-Hung & Chu, Chen-Yeon & Li, Gung-Ching & Wu, Chueh-Cheng, 2012. "Multivariable direct-drive linear generators for wave energy," Applied Energy, Elsevier, vol. 100(C), pages 112-117.
    5. Harne, R.L. & Schoemaker, M.E. & Dussault, B.E. & Wang, K.W., 2014. "Wave heave energy conversion using modular multistability," Applied Energy, Elsevier, vol. 130(C), pages 148-156.
    6. Li, Guang & Belmont, Michael R., 2014. "Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device," Renewable Energy, Elsevier, vol. 69(C), pages 453-463.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    2. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    4. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    5. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    6. Chen, Zhongfei & Zhang, Liang & Yeung, Ronald W., 2019. "Analysis and optimization of a Dual Mass-Spring-Damper (DMSD) wave-energy convertor with variable resonance capability," Renewable Energy, Elsevier, vol. 131(C), pages 1060-1072.
    7. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    8. Jin, Peng & Zhou, Binzhen & Göteman, Malin & Chen, Zhongfei & Zhang, Liang, 2019. "Performance optimization of a coaxial-cylinder wave energy converter," Energy, Elsevier, vol. 174(C), pages 450-459.
    9. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    10. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    11. Ni, Wenchi & Zhang, Xu & Zhang, Wei & Liang, Shuangling, 2021. "Numerical investigation of adaptive damping control for raft-type wave energy converters," Renewable Energy, Elsevier, vol. 175(C), pages 520-531.
    12. Li, Liang & Gao, Yan, 2023. "Development of a real-time wave energy control with consideration of control latency," Energy, Elsevier, vol. 277(C).
    13. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    14. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Li, Wenlong & Ching, T.W. & Chau, K.T., 2017. "Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation," Applied Energy, Elsevier, vol. 208(C), pages 878-888.
    16. Marques Silva, Jorge & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "Model predictive control based on air pressure forecasting of OWC wave power plants," Energy, Elsevier, vol. 284(C).
    17. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    18. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    19. O'Sullivan, Adrian C.M. & Lightbody, Gordon, 2017. "Co-design of a wave energy converter using constrained predictive control," Renewable Energy, Elsevier, vol. 102(PA), pages 142-156.
    20. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:571-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.