IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp806-828.html
   My bibliography  Save this article

Numerical modelling of neutral atmospheric boundary layer flow through heterogeneous forest canopies in complex terrain (a case study of a Swedish wind farm)

Author

Listed:
  • Abedi, Hamidreza
  • Sarkar, Saptarshi
  • Johansson, Håkan

Abstract

This paper exposes the risk of generalization of wind conditions from a single met-mast measurement to be representative of the actual flow field in a wind farm situated in complex terrain. As a case study, Large-Eddy Simulation (LES) of the neutral Atmospheric Boundary Layer (ABL) flow for a mid-western Sweden wind farm is performed. The site-specific complex topography and the forest properties like the Plant Area Density and the tree heights are extracted from the Airborne Laser Scanning (ALS) 3D data, thus the forest is heterogeneous. To emphasize the impact of the local topography and surface roughness on the wind field, the wind turbines are not included in the numerical simulations. The predicted wind speeds using LES are compared to wind speed from the nacelle-mounted anemometers taken from the wind farm's turbine SCADA data, focusing on the wake-free turbines. A sufficient degree of match is observed, supporting the accuracy of the numerical simulations. The results show that inflow variables i.e., mean wind speed, shear exponent and turbulence intensity vary at each wind turbine location justifying the need for turbine-specific assessment of the wind resource in a wind farm located in forested complex terrain. The inter-turbine (between turbines in the wind farm) differences in wind resource is quantified in terms of the difference in turbine-specific structural and mechanical loads by running wind turbine mechanical simulations using the extracting the wind fields predicted by the LES. The results show that not only inter-turbine loads varying significantly in the wind farm, but the turbine loads also differ significantly if a homogeneous assumption is made for the forest. Most importantly, it was found that the homogeneous forest assumption predicted a higher turbulence intensity compared to a heterogeneous forest resulting.

Suggested Citation

  • Abedi, Hamidreza & Sarkar, Saptarshi & Johansson, Håkan, 2021. "Numerical modelling of neutral atmospheric boundary layer flow through heterogeneous forest canopies in complex terrain (a case study of a Swedish wind farm)," Renewable Energy, Elsevier, vol. 180(C), pages 806-828.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:806-828
    DOI: 10.1016/j.renene.2021.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121011964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Javier Sanz Rodrigo & Roberto Aurelio Chávez Arroyo & Patrick Moriarty & Matthew Churchfield & Branko Kosović & Pierre‐Elouan Réthoré & Kurt Schaldemose Hansen & Andrea Hahmann & Jeffrey D. Mirocha & , 2017. "Mesoscale to microscale wind farm flow modeling and evaluation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    3. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
    4. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    2. Abedi, Hamidreza, 2023. "Assessment of flow characteristics over complex terrain covered by the heterogeneous forest at slightly varying mean flow directions," Renewable Energy, Elsevier, vol. 202(C), pages 537-553.
    3. Taiwo Adedipe & Ashvinkumar Chaudhari & Antti Hellsten & Tuomo Kauranne & Heikki Haario, 2022. "Numerical Investigation on the Effects of Forest Heterogeneity on Wind-Turbine Wake," Energies, MDPI, vol. 15(5), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abedi, Hamidreza, 2023. "Assessment of flow characteristics over complex terrain covered by the heterogeneous forest at slightly varying mean flow directions," Renewable Energy, Elsevier, vol. 202(C), pages 537-553.
    2. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
    3. Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
    4. Belqasem Aljafari & Jasmin Pamela Stephenraj & Indragandhi Vairavasundaram & Raja Singh Rassiah, 2022. "Steady State Modeling and Performance Analysis of a Wind Turbine-Based Doubly Fed Induction Generator System with Rotor Control," Energies, MDPI, vol. 15(9), pages 1-19, May.
    5. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    6. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    7. Radünz, William Corrêa & de Almeida, Everton & Gutiérrez, Alejandro & Acevedo, Otávio Costa & Sakagami, Yoshiaki & Petry, Adriane Prisco & Passos, Júlio César, 2022. "Nocturnal jets over wind farms in complex terrain," Applied Energy, Elsevier, vol. 314(C).
    8. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    11. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    12. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    13. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    14. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    15. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    16. Guanghui Che & Daocheng Zhou & Rui Wang & Lei Zhou & Hongfu Zhang & Sheng Yu, 2024. "Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    17. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    18. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    19. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    20. Vuichard, Pascal & Stauch, Alexander & Wüstenhagen, Rolf, 2021. "Keep it local and low-key: Social acceptance of alpine solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:806-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.