IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp482-493.html
   My bibliography  Save this article

Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis

Author

Listed:
  • Pratticò, Luca
  • Fronza, Nicola
  • Bartali, Ruben
  • Chiappini, Andrea
  • Sciubba, Enrico
  • González-Aguilar, J.
  • Crema, Luigi

Abstract

Volumetric solar receivers are essential components in high-temperature concentrated solar power plants. Their optical design is crucial for achieving efficient photon-thermal energy conversion; however, their three-dimensional geometry complicates a reliable and accurate optical characterization. This work proposes a new methodology for the 3D optical-performance analysis of the volumetric absorber having an open hierarchical structure. Firstly, the solar absorber is optically characterized using a test bench that mainly comprises a solar simulator and a customized instrument equipped with single-photon avalanche diodes, which holds the absorber and measures light flux on its external surface. Then experimental measurements are compared with a Monte Carlo ray-tracing numerical model. The results are consequently employed to understand light propagation in the absorber. This procedure is successfully applied to characterize a complex three-dimensional self-similar structure manufactured by Selective Laser Melting. The proposed experimental technique is a promising candidate for becoming a robust in operando method to characterize the radiation propagation within the complex porous structures employed for volumetric receivers.

Suggested Citation

  • Pratticò, Luca & Fronza, Nicola & Bartali, Ruben & Chiappini, Andrea & Sciubba, Enrico & González-Aguilar, J. & Crema, Luigi, 2021. "Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis," Renewable Energy, Elsevier, vol. 180(C), pages 482-493.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:482-493
    DOI: 10.1016/j.renene.2021.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    2. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    3. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
    4. Capuano, Raffaele & Fend, Thomas & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2017. "Optimized volumetric solar receiver: Thermal performance prediction and experimental validation," Renewable Energy, Elsevier, vol. 114(PB), pages 556-566.
    5. Claudia Toro & Matteo V. Rocco & Emanuela Colombo, 2016. "Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid," Energies, MDPI, vol. 9(11), pages 1-17, October.
    6. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    2. Zhang, Xueyan & Li, Jiayue & Chen, Jun & Chen, Fei, 2023. "Preliminary investigation on optical performance of linear fresnel lens coupled compound parabolic concentrator," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    2. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    3. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    4. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    5. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    6. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    7. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    8. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    9. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    10. Vishwa Deepak Kumar & Vikas K. Upadhyay & Gurveer Singh & Sudipto Mukhopadhyay & Laltu Chandra, 2022. "Open volumetric air receiver: An innovative application and a major challenge," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    11. Guilong Dai & Ying Zhuang & Xiaoyu Wang & Xue Chen & Chuang Sun & Shenghua Du, 2022. "Experimental Investigation on the Vector Characteristics of Concentrated Solar Radiation Flux Map," Energies, MDPI, vol. 16(1), pages 1-15, December.
    12. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    13. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Yang, Dazhi & Pan, Qinghui & Wang, Fuqiang & Huang, Xing, 2022. "Effects of foam structure on thermochemical characteristics of porous-filled solar reactor," Energy, Elsevier, vol. 239(PC).
    14. Cheilytko, Andrii & Schwarzbözl, Peter & Wieghardt, Kai, 2023. "Modeling of heat conduction processes in porous absorber of open type of solar tower stations," Renewable Energy, Elsevier, vol. 215(C).
    15. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    16. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
    17. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    18. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    19. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    20. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:482-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.