IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017445.html
   My bibliography  Save this article

Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow

Author

Listed:
  • Khan, Rehan
  • Ullah, Sati
  • Qahtani, Faez
  • Pao, William
  • Talha, Tariq

Abstract

Sediment erosion-corrosion is a critical threat to the safe operation of hydro turbines, which may lead to component damage or even complete failure of the turbine. A lack of understanding of the mechanism of sand erosion is a barrier to developing an erosion model to exactly quantify sand erosion in the Pelton turbine. The preeminent objectives of this research work are to determine parameters that influence sand erosion, identify erosion-prone areas in Pelton turbine buckets, quantify the erosive wear experimentally and numerically, determine the impact of erosive wear, and analyze the microscopic mechanism of erosion. Five Pelton buckets made of aluminum, carbon steel, stainless steel, polylactic acid (PLA), and acrylonitrile butadiene styrene (ABS) were used to perform erosion experiments under two-phase, solid-liquid flow conditions. Multi-layer paint modelling technique was used to identify erosion-prone areas. Optical profilometry was used to perform surface roughness analysis and Scanning Electron Microscopy was used to evaluate the microscopic degree of damage due to erosive wear in the Pelton bucket. Mass loss and thickness reduction analyses were performed to quantify the erosive wear. The erosion rates of aluminum, carbon steel, stainless steel, and ABS were 190 %, 86.73 %, 48.79 %, and 5.61 % higher, respectively, compared to PLA and both PLA and ABS demonstrated exceptional resistance.

Suggested Citation

  • Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017445
    DOI: 10.1016/j.renene.2023.119829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    2. Pang, Jiayang & Liu, Huizi & Liu, Xiaobing & Yang, Han & Peng, Yuanjie & Zeng, Yongzhong & Yu, Zhishun, 2022. "Study on sediment erosion of high head Francis turbine runner in Minjiang River basin," Renewable Energy, Elsevier, vol. 192(C), pages 849-858.
    3. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    4. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    5. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas, 2020. "Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine," Renewable Energy, Elsevier, vol. 145(C), pages 893-902.
    6. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    7. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    8. Han, L. & Zhang, G.F. & Wang, Y. & Wei, X.Z., 2021. "Investigation of erosion influence in distribution system and nozzle structure of pelton turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1119-1128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    2. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    3. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    4. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    5. Li, Lihao & Lu, Jiaxing & Gong, Yong & Zhao, Haoyu & Liu, Xiaobing & Zhu, Baoshan, 2024. "Sediment erosion characteristics of Pelton turbine runner: Effects of sediment concentration and diameter," Renewable Energy, Elsevier, vol. 220(C).
    6. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    7. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    8. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    9. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    10. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    11. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
    12. Babu, Abhishek & Perumal, G. & Arora, H.S. & Grewal, H.S., 2021. "Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications," Renewable Energy, Elsevier, vol. 180(C), pages 1044-1055.
    13. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    14. Song, Xijie & Luo, Yongyao & Wang, Zhengwei, 2024. "Mechanism of the influence of sand on the energy dissipation inside the hydraulic turbine under sediment erosion condition," Energy, Elsevier, vol. 294(C).
    15. Kramer, Matthias & Terheiden, Kristina & Wieprecht, Silke, 2015. "Optimized design of impulse turbines in the micro-hydro sector concerning air detrainment processes," Energy, Elsevier, vol. 93(P2), pages 2604-2613.
    16. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    17. Jung, In Hyuk & Kim, Young Soo & Shin, Dong Ho & Chung, Jin Taek & Shin, Youhwan, 2019. "Influence of spear needle eccentricity on jet quality in micro Pelton turbine for power generation," Energy, Elsevier, vol. 175(C), pages 58-65.
    18. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    19. Yao, Liming & Liu, Yuxi & Xiao, Zhongmin & Chen, Yang, 2023. "An algorithm combining sedimentation experiments for pipe erosion investigation," Energy, Elsevier, vol. 270(C).
    20. Cai, Liu-xi & Wang, Shun-sen & Mao, Jing-ru & Di, Juan & Feng, Zhen-ping, 2015. "The influence of nozzle chamber structure and partial-arc admission on the erosion characteristics of solid particles in the control stage of a supercritical steam turbine," Energy, Elsevier, vol. 82(C), pages 341-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.