Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119829
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
- Pang, Jiayang & Liu, Huizi & Liu, Xiaobing & Yang, Han & Peng, Yuanjie & Zeng, Yongzhong & Yu, Zhishun, 2022. "Study on sediment erosion of high head Francis turbine runner in Minjiang River basin," Renewable Energy, Elsevier, vol. 192(C), pages 849-858.
- Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
- Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
- Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas, 2020. "Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine," Renewable Energy, Elsevier, vol. 145(C), pages 893-902.
- Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
- Han, L. & Zhang, G.F. & Wang, Y. & Wei, X.Z., 2021. "Investigation of erosion influence in distribution system and nozzle structure of pelton turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1119-1128.
- Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
- Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
- Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
- Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
- Li, Lihao & Lu, Jiaxing & Gong, Yong & Zhao, Haoyu & Liu, Xiaobing & Zhu, Baoshan, 2024. "Sediment erosion characteristics of Pelton turbine runner: Effects of sediment concentration and diameter," Renewable Energy, Elsevier, vol. 220(C).
- Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
- Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
- Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
- Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
- Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
- Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
- Babu, Abhishek & Perumal, G. & Arora, H.S. & Grewal, H.S., 2021. "Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications," Renewable Energy, Elsevier, vol. 180(C), pages 1044-1055.
- Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
- Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
- Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
- Cai, Liu-xi & Wang, Shun-sen & Mao, Jing-ru & Di, Juan & Feng, Zhen-ping, 2015. "The influence of nozzle chamber structure and partial-arc admission on the erosion characteristics of solid particles in the control stage of a supercritical steam turbine," Energy, Elsevier, vol. 82(C), pages 341-352.
- Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
- Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
- Xiao, Yexiang & Liu, Zishi & Liang, Quanwei & Liu, Jie & Zhang, Jin & Zhu, Yilin & Li, Xuesong & Gu, Chunwei, 2024. "The interaction between bucket number and performance of a Pelton turbine," Energy, Elsevier, vol. 287(C).
- Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
More about this item
Keywords
Sediment erosion; Hydro turbines; CFD-DPM; Pelton turbine injector; Polylactic acid; Acrylonitrile butadiene styrene;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.