IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp370-378.html
   My bibliography  Save this article

Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis

Author

Listed:
  • Suriapparao, Dadi V.
  • Vinu, R.

Abstract

This study is focused on creating value addition to kitchen waste (KW) by converting it into valuable product resources via microwave pyrolysis. The effect of the following on product yields and energy efficiency were examined in this study: (i) microwave power (140–700 W), (ii) KW: susceptor ratio (20:0 to 20:20 (g/g)), and (iii) pyrolysis temperature (200–600 °C). The KW was pyrolyzed without the addition of a susceptor and char formed during pyrolysis acted as a susceptor and enhanced pyrolysis energy efficiency (78%). An increase in microwave power has significantly increased the heating rate from 4 to 85 °C/min, and KW has produced 73 wt% of bio-oil and gases even at low microwave power (140 W). An increase in pyrolysis temperature promoted thermal cracking of KW, which resulted in decreased char yields (64–27 wt%), and an increase in gas yields (12–45 wt%). Bio-oil contains a significant amount of phenolics (35–50%) and its selectivity varied significantly with the variables probed. The selectivity of furan derivatives has dramatically decreased from 45 to 20% with the increase in pyrolysis temperature. This work demonstrated the feasibility of valorization of kitchen waste into various value-added products.

Suggested Citation

  • Suriapparao, Dadi V. & Vinu, R., 2021. "Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis," Renewable Energy, Elsevier, vol. 179(C), pages 370-378.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:370-378
    DOI: 10.1016/j.renene.2021.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2015. "Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis," Energy, Elsevier, vol. 89(C), pages 974-981.
    2. Li, Yangyang & Jin, Yiying & Li, Jinhui & Nie, Yongfeng, 2016. "Enhanced nitrogen distribution and biomethanation of kitchen waste by thermal pre-treatment," Renewable Energy, Elsevier, vol. 89(C), pages 380-388.
    3. Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
    4. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    5. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    6. Li, Yangyang & Jin, Yiying & Li, Jinhui, 2016. "Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment," Energy, Elsevier, vol. 98(C), pages 155-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Xiaopeng & Wang, Biao & Hu, Junhao & Chen, Wei & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Investigating the synergistic driving action of microwave and char-based multi-catalysts on biomass catalytic pyrolysis into value-added bio-products," Renewable Energy, Elsevier, vol. 219(P2).
    2. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    3. Suriapparao, Dadi V. & Hemanth Kumar, Tanneru & Reddy, B. Rajasekhar & Yerrayya, Attada & Srinivas, B. Abhinaya & Sivakumar, Pandian & Prakash, S. Reddy & Sankar Rao, Chinta & Sridevi, Veluru & Desing, 2022. "Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes," Renewable Energy, Elsevier, vol. 181(C), pages 990-999.
    4. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    5. Ksawery Kuligowski & Izabela Konkol & Lesław Świerczek & Katarzyna Chojnacka & Adam Cenian & Szymon Szufa, 2023. "Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons," Sustainability, MDPI, vol. 15(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    3. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    4. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    5. Li, Jinglin & Lin, Li & Ju, Tongyao & Meng, Fanzhi & Han, Siyu & Chen, Kailun & Jiang, Jianguo, 2024. "Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    7. Lam, Su Shiung & Wan Mahari, Wan Adibah & Ok, Yong Sik & Peng, Wanxi & Chong, Cheng Tung & Ma, Nyuk Ling & Chase, Howard A. & Liew, Zhenling & Yusup, Suzana & Kwon, Eilhann E. & Tsang, Daniel C.W., 2019. "Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
    10. Potnuri, Ramesh & Suriapparao, Dadi V. & Sankar Rao, Chinta & Sridevi, Veluru & Kumar, Abhishankar, 2022. "Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 798-809.
    11. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    13. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    14. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    16. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    17. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    18. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
    20. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:370-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.