IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017249.html
   My bibliography  Save this article

Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

Author

Listed:
  • Hu, Miaosen
  • Zheng, Guoqiang
  • Su, Zhonge
  • Kong, Lingrui
  • Wang, Guodong

Abstract

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.

Suggested Citation

  • Hu, Miaosen & Zheng, Guoqiang & Su, Zhonge & Kong, Lingrui & Wang, Guodong, 2024. "Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017249
    DOI: 10.1016/j.energy.2024.131951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.