IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp372-381.html
   My bibliography  Save this article

Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)

Author

Listed:
  • Gómez-Navarro, Tomás
  • Brazzini, Tommaso
  • Alfonso-Solar, David
  • Vargas-Salgado, Carlos

Abstract

Cities are expected to be protagonists of the energy transition and, among other challenges, the decarbonation of the residential consumption could greatly benefit from photovoltaic generation in the built environment. To assess its potential, the present study analyses the possibility to cover the electric demand of the city of Valencia with rooftop-installed PV panels. Specific types of buildings has been selected to study the potential of each one of them with respect to their demand and with a specific production/consumption model. The total potential energy production for the city of Valencia is estimated to be enough to satisfy the demand of domestic electricity. The economic investment scenario has been analysed (best- and worst-case scenarios), and the corresponding environmental benefits have been studied. The results of the present article are encouraging in the context of a global energy transition, necessary in the present times to keep human consumption within the planetary limits.

Suggested Citation

  • Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:372-381
    DOI: 10.1016/j.renene.2021.04.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812100567X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    3. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    4. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    6. Jonathan J. Buonocore & Patrick Luckow & Gregory Norris & John D. Spengler & Bruce Biewald & Jeremy Fisher & Jonathan I. Levy, 2016. "Health and climate benefits of different energy-efficiency and renewable energy choices," Nature Climate Change, Nature, vol. 6(1), pages 100-105, January.
    7. Narayanan, Arun & Mets, Kevin & Strobbe, Matthias & Develder, Chris, 2019. "Feasibility of 100% renewable energy-based electricity production for cities with storage and flexibility," Renewable Energy, Elsevier, vol. 134(C), pages 698-709.
    8. Alistair Hunt & Paul Watkiss, 2011. "Climate change impacts and adaptation in cities: a review of the literature," Climatic Change, Springer, vol. 104(1), pages 13-49, January.
    9. Gautier, Axel & Hoet, Brieuc & Jacqmin, Julien & Van Driessche, Sarah, 2019. "Self-consumption choice of residential PV owners under net-metering," Energy Policy, Elsevier, vol. 128(C), pages 648-653.
    10. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2020. "Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria," Renewable Energy, Elsevier, vol. 152(C), pages 217-228.
    11. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    12. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    13. Gómez-Navarro, Tomás & Calero-Pastor, María & Pellicer-Sifres, Victoria & Lillo-Rodrigo, Pau & Alfonso-Solar, David & Pérez-Navarro, Ángel, 2021. "Fuel poverty map of Valencia (Spain): Results of a direct survey to citizens and recommendations for policy making," Energy Policy, Elsevier, vol. 151(C).
    14. Londo, Marc & Matton, Robin & Usmani, Omar & van Klaveren, Marieke & Tigchelaar, Casper & Brunsting, Suzanne, 2020. "Alternatives for current net metering policy for solar PV in the Netherlands: A comparison of impacts on business case and purchasing behaviour of private homeowners, and on governmental costs," Renewable Energy, Elsevier, vol. 147(P1), pages 903-915.
    15. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    16. López Prol, Javier & Steininger, Karl W., 2020. "Photovoltaic self-consumption is now profitable in Spain: Effects of the new regulation on prosumers’ internal rate of return," Energy Policy, Elsevier, vol. 146(C).
    17. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    18. Xiangdong Li & Ling Jin & Haidong Kan, 2019. "Air pollution: a global problem needs local fixes," Nature, Nature, vol. 570(7762), pages 437-439, June.
    19. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    20. Scott Spillias & Peter Kareiva & Mary Ruckelshaus & Eve McDonald-Madden, 2020. "Renewable energy targets may undermine their sustainability," Nature Climate Change, Nature, vol. 10(11), pages 974-976, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene Martínez Reverte & Tomás Gómez-Navarro & Carlos Sánchez-Díaz & Carla Montagud Montalvá, 2022. "Evaluation of Alternatives for Energy Supply from Fuel Cells in Compact Cities in the Mediterranean Climate; Case Study: City of Valencia," Energies, MDPI, vol. 15(12), pages 1-30, June.
    2. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    3. Kutlu, Elif Ceren & Durusoy, Beyza & Ozden, Talat & Akinoglu, Bulent G., 2022. "Technical potential of rooftop solar photovoltaic for Ankara," Renewable Energy, Elsevier, vol. 185(C), pages 779-789.
    4. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    5. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    6. Szostok, Agnieszka & Stanek, Wojciech, 2022. "Thermo-ecological analysis - The comparison of collector and PV to PV/T system," Renewable Energy, Elsevier, vol. 200(C), pages 10-23.
    7. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    8. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    9. Mattia De Rosa & Vincenzo Bianco & Henrik Barth & Patricia Pereira da Silva & Carlos Vargas Salgado & Fabiano Pallonetto, 2023. "Technologies and Strategies to Support Energy Transition in Urban Building and Transportation Sectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    10. Enrique Fuster-Palop & Carlos Prades-Gil & Ximo Masip & J. D. Viana-Fons & Jorge Payá, 2023. "Techno-Economic Potential of Urban Photovoltaics: Comparison of Net Billing and Net Metering in a Mediterranean Municipality," Energies, MDPI, vol. 16(8), pages 1-32, April.
    11. Dasí-Crespo, Daniel & Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2023. "Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain," Renewable Energy, Elsevier, vol. 204(C), pages 788-802.
    12. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    13. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    14. Xiong, Binyu & Wei, Feng & Wang, Yifei & Xia, Kairui & Su, Fuwen & Fang, Yingjia & Gao, Zuchang & Wei, Zhongbao, 2024. "Hybrid robust-stochastic optimal scheduling for multi-objective home energy management with the consideration of uncertainties," Energy, Elsevier, vol. 290(C).
    15. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    16. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    17. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    18. Aparisi-Cerdá, I. & Ribó-Pérez, D. & Gomar-Pascual, J. & Pineda-Soler, J. & Poveda-Bautista, R. & García-Melón, M., 2024. "Assessing gender and climate objectives interactions in urban decarbonisation policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    3. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    4. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    5. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    6. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    7. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    8. Kutlu, Elif Ceren & Durusoy, Beyza & Ozden, Talat & Akinoglu, Bulent G., 2022. "Technical potential of rooftop solar photovoltaic for Ankara," Renewable Energy, Elsevier, vol. 185(C), pages 779-789.
    9. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    10. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    11. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    12. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    13. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    14. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    16. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    17. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    18. Antonia Cevallos-Escandón & Edgar Antonio Barragan-Escandón & Esteban Zalamea-León & Xavier Serrano-Guerrero & Julio Terrados-Cepeda, 2023. "Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador," Energies, MDPI, vol. 16(14), pages 1-14, July.
    19. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    20. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:372-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.