IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034412.html
   My bibliography  Save this article

Hybrid robust-stochastic optimal scheduling for multi-objective home energy management with the consideration of uncertainties

Author

Listed:
  • Xiong, Binyu
  • Wei, Feng
  • Wang, Yifei
  • Xia, Kairui
  • Su, Fuwen
  • Fang, Yingjia
  • Gao, Zuchang
  • Wei, Zhongbao

Abstract

Home energy management systems (HEMS) have transformed the traditional structure of electricity consumption on the customer side and facilitate real-time interaction between the customers and the grid. However, the HEMS scheduling is currently challenged by a variety of uncertainties, including photovoltaic (PV) output, electric vehicle (EV) charging/discharging behavior, and real-time pricing (RTP), which can seriously impact home equipment scheduling and critical objectives like total cost and users' comfort. Therefore, a hybrid robust-stochastic (HRS) optimization approach for multi-objective home energy management with the consideration of uncertainties and users' comfort has been proposed in this paper. Firstly, a detailed classification and modeling of the loads in the household are carried out to facilitate the exchange between the user-side resources and the grid in a benchmark based on RTP. Then the stochastic charging/discharging behavior of EV is modeled by stochastic optimization (SO) methods, and uncertainties in PV production and RTP are modeled by robust optimization (RO) methods, making full use of the flexibility of various uncertainty parameters. Meanwhile, the users' requirements for comfort are considered, and a multi-objective function for the economy and comfort of the HEMS is established. Finally, the effectiveness of the proposed method has been verified by case studies. The results show that the proposed HRS is effective to deal with different levels of the uncertainty parameters and ensures the users' comfort requirements in home energy system. Moreover, the users can make trade-offs between various levels of robust decisions according to their needs of economic and comfort level, thus obtaining a variety of electricity consumption decisions.

Suggested Citation

  • Xiong, Binyu & Wei, Feng & Wang, Yifei & Xia, Kairui & Su, Fuwen & Fang, Yingjia & Gao, Zuchang & Wei, Zhongbao, 2024. "Hybrid robust-stochastic optimal scheduling for multi-objective home energy management with the consideration of uncertainties," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034412
    DOI: 10.1016/j.energy.2023.130047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
    2. Javadi, Mohammad Sadegh & Gough, Matthew & Lotfi, Mohamed & Esmaeel Nezhad, Ali & Santos, Sérgio F. & Catalão, João P.S., 2020. "Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries," Energy, Elsevier, vol. 210(C).
    3. Shirazi, Elham & Jadid, Shahram, 2017. "Cost reduction and peak shaving through domestic load shifting and DERs," Energy, Elsevier, vol. 124(C), pages 146-159.
    4. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    5. Mohammadi Rad, Amin & Barforoushi, Taghi, 2020. "Optimal scheduling of resources and appliances in smart homes under uncertainties considering participation in spot and contractual markets," Energy, Elsevier, vol. 192(C).
    6. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    7. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    8. Jin, Xin & Baker, Kyri & Christensen, Dane & Isley, Steven, 2017. "Foresee: A user-centric home energy management system for energy efficiency and demand response," Applied Energy, Elsevier, vol. 205(C), pages 1583-1595.
    9. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    2. Ouedraogo, Kiswendsida Elias & Ekim, Pınar Oğuz & Demirok, Erhan, 2023. "Feasibility of low-cost energy management system using embedded optimization for PV and battery storage assisted residential buildings," Energy, Elsevier, vol. 271(C).
    3. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    4. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    5. Wang, Guotao & Zhou, Yifan & Lin, Zhenjia & Zhu, Shibo & Qiu, Rui & Chen, Yuntian & Yan, Jinyue, 2024. "Robust energy management through aggregation of flexible resources in multi-home micro energy hub," Applied Energy, Elsevier, vol. 357(C).
    6. Wei Wei & Haoyue Jia & Yunfei Mu & Jianzhong Wu & Hongjie Jia, 2019. "A Robust Assessment Model of the Solar Electrical-Thermal Energy Comprehensive Accommodation Capability in a District Integrated Energy System," Energies, MDPI, vol. 12(7), pages 1-26, April.
    7. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    8. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).
    9. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
    10. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    11. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    12. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    13. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    14. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    15. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    16. Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
    17. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    18. Kutlu, Elif Ceren & Durusoy, Beyza & Ozden, Talat & Akinoglu, Bulent G., 2022. "Technical potential of rooftop solar photovoltaic for Ankara," Renewable Energy, Elsevier, vol. 185(C), pages 779-789.
    19. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    20. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.