IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1157-1165.html
   My bibliography  Save this article

Enhanced enzymatic hydrolysis of sisal waste by sequential pretreatment with UV-catalyzed alkaline hydrogen peroxide and ionic liquid

Author

Listed:
  • Cao, Jing
  • Yang, Jian
  • Yang, Yishuo
  • Wang, Zhaomei

Abstract

Combinatorial pretreatment is widely recognized as a promising strategy for bioconversion of lignocellulosic feedstock. In this study, a two-step sequential approach with UV-catalyzed alkaline hydrogen peroxide (UHP) process and ionic liquid (IL) treatment was performed on sisal waste in order to achieve a higher saccharification. The integrated UHP-IL pretreatment removed lignin by 79.2%, increased cellulose content to 73.5% and reduced the crystallinity index to 16.2%. The maximum reducing sugar yield of 69.2 g/100 g dry sisal waste and sugar conversion of 89.4% were attained by UHP pretreatment with 0.1 g/g hydrogen peroxide for 6 h followed by IL pretreatment with 20 mL/g tetrabutylammonium hydroxide at 60 °C for 40 min and enzymatic hydrolysis for 36 h with enzyme loading of 10 FPU/g. Kinetic modeling analysis revealed that UHP-IL process promoted the adsorption and binding of the substrate to enzymes via its combination effect of delignification and decrystallization, which increased the initial rate of enzymatic hydrolysis and the yield of reducing sugar.

Suggested Citation

  • Cao, Jing & Yang, Jian & Yang, Yishuo & Wang, Zhaomei, 2021. "Enhanced enzymatic hydrolysis of sisal waste by sequential pretreatment with UV-catalyzed alkaline hydrogen peroxide and ionic liquid," Renewable Energy, Elsevier, vol. 169(C), pages 1157-1165.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1157-1165
    DOI: 10.1016/j.renene.2021.01.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kassaye, Samuel & Pant, Kamal K. & Jain, Sapna, 2017. "Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps," Renewable Energy, Elsevier, vol. 104(C), pages 177-184.
    2. Xie, Wei & Ren, Yanjing & Jiang, Fan & Liang, Jibao & Du, Shuang-kui, 2020. "Pretreatment of quinoa straw with 1-butyl-3-methylimidazolium chloride and physiochemical characterization of biomass," Renewable Energy, Elsevier, vol. 146(C), pages 1364-1371.
    3. Tan, Minghui & Ma, Liang & Rehman, Muhamamd Saif Ur & Ahmed, Muhammad Ajaz & Sajid, Muhammad & Xu, Xia & Sun, Yong & Cui, Ping & Xu, Jian, 2019. "Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 950-958.
    4. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    5. Urszula Dziekońska-Kubczak & Joanna Berłowska & Piotr Dziugan & Piotr Patelski & Maria Balcerek & Katarzyna Pielech-Przybylska & Katarzyna Robak, 2019. "Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass," Energies, MDPI, vol. 12(9), pages 1-13, May.
    6. Tyagi, Uplabdhi & Anand, Neeru & Kumar, Dinesh, 2020. "Efficient hydrolysis of Babool wood (Acacia nilotica) to total reducing sugars using acid/ionic liquid combination catalyzed by modified activated carbon," Renewable Energy, Elsevier, vol. 146(C), pages 56-65.
    7. Fockink, Douglas H. & Andreaus, Jürgen & Ramos, Luiz P. & Łukasik, Rafał M., 2020. "Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: A case study using green solvents," Renewable Energy, Elsevier, vol. 145(C), pages 490-499.
    8. Lima, Clebson S.S. & Conceição, Marta M. & Silva, Flávio L.H. & Lima, Ezenildo E. & Conrado, Líbia S. & Leão, Douglas A.S., 2013. "Characterization of acid hydrolysis of sisal," Applied Energy, Elsevier, vol. 102(C), pages 254-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Meishan & Lei, Ming & Xie, Jun & Zhang, Hongdan, 2022. "Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production," Renewable Energy, Elsevier, vol. 186(C), pages 646-655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega, Julieth Orduña & Mora Vargas, Jorge Andrés & Metzker, Gustavo & Gomes, Eleni & da Silva, Roberto & Boscolo, Mauricio, 2021. "Enhancing the production of the fermentable sugars from sugarcane straw: A new approach to applying alkaline and ozonolysis pretreatments," Renewable Energy, Elsevier, vol. 164(C), pages 502-508.
    2. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    3. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    4. Shangyuan Tang & Yushen Cao & Chunming Xu & Yue Wu & Lingci Li & Peng Ye & Ying Luo & Yifan Gao & Yonghong Liao & Qiong Yan & Xiyu Cheng, 2020. "One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L," Energies, MDPI, vol. 13(4), pages 1-12, February.
    5. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    7. Sharma, Vishal & Nargotra, Parushi & Sharma, Surbhi & Bajaj, Bijender Kumar, 2021. "Efficacy and functional mechanisms of a novel combinatorial pretreatment approach based on deep eutectic solvent and ultrasonic waves for bioconversion of sugarcane bagasse," Renewable Energy, Elsevier, vol. 163(C), pages 1910-1922.
    8. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    9. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    10. Deslin Nadar & Kubendren Naicker & David Lokhat, 2020. "Ultrasonically-Assisted Dissolution of Sugarcane Bagasse during Dilute Acid Pretreatment: Experiments and Kinetic Modeling," Energies, MDPI, vol. 13(21), pages 1-18, October.
    11. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    12. Juan Camilo Solarte-Toro & Carlos Ariel Cardona Alzate, 2023. "Sustainability of Biorefineries: Challenges and Perspectives," Energies, MDPI, vol. 16(9), pages 1-24, April.
    13. Yiyang Liu & Jinze Liu & Hongzhen He & Shanru Yang & Yixiao Wang & Jin Hu & Huan Jin & Tianxiang Cui & Gang Yang & Yong Sun, 2021. "A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method," Energies, MDPI, vol. 14(18), pages 1-16, September.
    14. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    15. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    16. Dehghanzad, Mahsa & Shafiei, Marzieh & Karimi, Keikhosro, 2020. "Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis," Renewable Energy, Elsevier, vol. 158(C), pages 332-342.
    17. Claudio Quiñones-Cerna & Juan Carlos Rodríguez-Soto & Gabriela Barraza-Jáuregui & Johnny Huanes-Carranza & José Alfredo Cruz-Monzón & Wilmer Ugarte-López & Fernando Hurtado-Butrón & Fanny Samanamud-Mo, 2024. "Bioconversion of Agroindustrial Asparagus Waste into Bacterial Cellulose by Komagataeibacter rhaeticus," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
    18. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Malherbe, Sarel J.M. & Cripwell, Rosemary A. & Favaro, Lorenzo & van Zyl, Willem H. & Viljoen-Bloom, Marinda, 2023. "Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing," Renewable Energy, Elsevier, vol. 206(C), pages 498-505.
    20. Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1157-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.