IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1715-d228716.html
   My bibliography  Save this article

Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass

Author

Listed:
  • Urszula Dziekońska-Kubczak

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Joanna Berłowska

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Piotr Dziugan

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Piotr Patelski

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Maria Balcerek

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Katarzyna Pielech-Przybylska

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Katarzyna Robak

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

Abstract

Pretreatment is a necessary step when lignocellulosic biomass is to be converted to simple sugars; however single-stage pretreatment is often insufficient to guarantee full availability of polymeric sugars from raw material to hydrolyzing enzymes. In this work, the two-stage pretreatment with use of acid (H 2 SO 4 , HNO 3 ) and alkali (NaOH) was applied in order to increase the susceptibility of Jerusalem artichoke stalks (JAS) and oat straw (OS) biomass on the enzymatic attack. The effect of the concentration of reagents (2% and 5% w/v) and the order of acid and alkali sequence on the composition of remaining solids and the efficiency of enzymatic hydrolysis was evaluated. It was found that after combined pretreatment process, due to the removal of hemicellulose and lignin, the content of cellulose in pretreated biomass increased to a large extent, reaching almost 90% d.m. and 95% d.m., in the case of JAS and OS, respectively. The enzymatic hydrolysis of solids remaining after pretreatment resulted in the formation of up to 45 g/L of glucose, for both JAS and OS. The highest glucose yield was achieved after pretreatment with 5% nitric acid followed by NaOH, and 90.6% and 97.6% of efficiency were obtained, respectively for JAS and OS.

Suggested Citation

  • Urszula Dziekońska-Kubczak & Joanna Berłowska & Piotr Dziugan & Piotr Patelski & Maria Balcerek & Katarzyna Pielech-Przybylska & Katarzyna Robak, 2019. "Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass," Energies, MDPI, vol. 12(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1715-:d:228716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    2. Long, Xiao-Hua & Shao, Hong-Bo & Liu, Ling & Liu, Li-Ping & Liu, Zhao-Pu, 2016. "Jerusalem artichoke: A sustainable biomass feedstock for biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1382-1388.
    3. Urszula Dziekońska-Kubczak & Joanna Berłowska & Piotr Dziugan & Piotr Patelski & Katarzyna Pielech-Przybylska & Maria Balcerek, 2018. "Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production," Energies, MDPI, vol. 11(8), pages 1-17, August.
    4. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jing & Yang, Jian & Yang, Yishuo & Wang, Zhaomei, 2021. "Enhanced enzymatic hydrolysis of sisal waste by sequential pretreatment with UV-catalyzed alkaline hydrogen peroxide and ionic liquid," Renewable Energy, Elsevier, vol. 169(C), pages 1157-1165.
    2. Shangyuan Tang & Yushen Cao & Chunming Xu & Yue Wu & Lingci Li & Peng Ye & Ying Luo & Yifan Gao & Yonghong Liao & Qiong Yan & Xiyu Cheng, 2020. "One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L," Energies, MDPI, vol. 13(4), pages 1-12, February.
    3. Deslin Nadar & Kubendren Naicker & David Lokhat, 2020. "Ultrasonically-Assisted Dissolution of Sugarcane Bagasse during Dilute Acid Pretreatment: Experiments and Kinetic Modeling," Energies, MDPI, vol. 13(21), pages 1-18, October.
    4. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    5. Jinmeng Chen & Xiaotian Ma & Mengying Liang & Zhiwei Guo & Yafan Cai & Chenjie Zhu & Zhi Wang & Shilei Wang & Jingliang Xu & Hanjie Ying, 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review," Waste, MDPI, vol. 2(4), pages 1-23, November.
    6. Huong, Vu Thi Thanh & Atjayutpokin, Thanaphat & Chinwatpaiboon, Piyawat & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2022. "Two-stage acid-alkali pretreatment of vetiver grass to enhance the subsequent sugar release by cellulase digestion," Renewable Energy, Elsevier, vol. 195(C), pages 755-765.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    4. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    6. Blessing Chidinma Nwachukwu & Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2021. "Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability," Agriculture, MDPI, vol. 11(1), pages 1-18, January.
    7. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    8. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    9. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    10. Vasilakou, K. & Nimmegeers, P. & Billen, P. & Van Passel, S., 2023. "Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    12. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    13. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    14. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    15. Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
    16. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    17. Shangyuan Tang & Yushen Cao & Chunming Xu & Yue Wu & Lingci Li & Peng Ye & Ying Luo & Yifan Gao & Yonghong Liao & Qiong Yan & Xiyu Cheng, 2020. "One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L," Energies, MDPI, vol. 13(4), pages 1-12, February.
    18. Wei, Shuxia & Li, Zichen & Sun, Yong & Zhang, Jiemei & Ge, Yuanyuan & Li, Zhili, 2022. "A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    19. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    20. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1715-:d:228716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.