IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp858-869.html
   My bibliography  Save this article

Application of inverse methodology to estimate unknown parameters of the mathematical model of biomass solar pyrolysis

Author

Listed:
  • Kaczor, Zuzanna
  • Buliński, Zbigniew
  • Sobek, Szymon
  • Werle, Sebastian

Abstract

The goal of the work is to determine unknown parameters of reactor heating in the process of biomass solar pyrolysis. The lab-scale reactor is heated by a xenon lamp, but the fraction of heat absorbed by the reactor is unknown, as well as the heat transfer coefficient from the reactor walls to the nitrogen flowing through internal reactor channels, and the overall heat transfer coefficient through the external reactor walls to the surroundings. The missing parameters are impossible to measure, therefore they need to be determined by solving the inverse problem. As the problem is strongly ill-conditioned, since the quantities are directly dependent on each other, two different inverse algorithms were used to retrieve them, namely, the Levenberg-Marquardt method and the Metropolis-Hastings method. The effectiveness of both approaches was assessed and then they were applied to the real data. The inverse problem was implemented in the MatLab software, while validation of the mathematical model and optimisation procedure was carried out with a CFD model built in Ansys Fluent 19.2. Calculations showed that 14.4% of the lamp power penetrates inside the reactor and heat transfer coefficients to the flowing nitrogen equal 8.74 W/m2K and 0.965 W/m2K to the surroundings.

Suggested Citation

  • Kaczor, Zuzanna & Buliński, Zbigniew & Sobek, Szymon & Werle, Sebastian, 2021. "Application of inverse methodology to estimate unknown parameters of the mathematical model of biomass solar pyrolysis," Renewable Energy, Elsevier, vol. 163(C), pages 858-869.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:858-869
    DOI: 10.1016/j.renene.2020.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
    2. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    3. Buliński, Zbigniew & Orlande, Helcio R.B. & Krysiński, Tomasz & Werle, Sebastian & Ziółkowski, Łukasz, 2019. "Coupled POD-Bayesian estimation of the parameters of mathematical model of the packed-bed drying of cherry stones," Energy, Elsevier, vol. 181(C), pages 345-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chunyun & Yu, Peng & Sun, Chengbao & Peng, Haifeng & Cui, Miao & Xu, Bingbing, 2024. "Prediction of thermal contact resistance for reusable heat-pipe cooled thermal protection system based on an inverse thermo-mechanical coupling method," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    2. Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
    3. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    6. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    7. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    8. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    9. Ren, Yunxiu & Xu, Chao & Tian, Ziqian & Wang, Tieying & Liao, Zhirong, 2021. "Investigation of the anisotropic thermal properties of the cuboid-like Ca(NO3)2-NaNO3/EG composite," Renewable Energy, Elsevier, vol. 171(C), pages 1303-1312.
    10. Pérez, Alejandro & Ruiz, Begoña & Fuente, Enrique & Calvo, Luis Fernando & Paniagua, Sergio, 2021. "Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector," Renewable Energy, Elsevier, vol. 169(C), pages 178-190.
    11. Dudziak, M. & Werle, S. & Marszałek, A. & Sobek, S. & Magdziarz, A., 2022. "Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn(II) adsorption," Energy, Elsevier, vol. 261(PB).
    12. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    13. Sobek, Szymon & Werle, Sebastian, 2020. "Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge," Renewable Energy, Elsevier, vol. 153(C), pages 962-974.
    14. Eldredge, T.V., 2021. "The feasibility of solar assisted pyrolysis of sewer sludge and its potential for CO2 emissions reductions," Energy, Elsevier, vol. 226(C).
    15. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    16. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    17. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    18. Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.
    19. Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
    20. Debora Mignogna & Márta Szabó & Paolo Ceci & Pasquale Avino, 2024. "Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition," Sustainability, MDPI, vol. 16(16), pages 1-33, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:858-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.