IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp2018-2028.html
   My bibliography  Save this article

CFD analysis and design optimization of an air manifold for a biomass boiler

Author

Listed:
  • Bianco, Vincenzo
  • Szubel, Mateusz
  • Matras, Beata
  • Filipowicz, Mariusz
  • Papis, Karolina
  • Podlasek, Szymon

Abstract

The present paper reports the results of the design optimization of an air manifold utilized for delivering the air necessary for the combustion process in a biomass-fired batch boiler. A CFD model is built and validated by using experimental data. The numerical model is used to improve the device performances by reducing the entropy generation, considered as a measure of the effectiveness of the design. Other parameters, namely outlet velocities, are also monitored in order to guarantee an efficient combustion process. Four different designs of the manifold, characterized by a progressive reduction in entropy generation, are proposed and then compared with the base case. In each design step possible sources of irreversibility, such as corners, sharp variation of the flow direction, etc. are smoothed, for example by rounding the corners or by accompanying the flow in its directional changes. For all the cases, entropy generation is monitored and a reduction in its value of ∼10 times is observed if the first and last designs are compared. Values of velocities and pressure drops are monitored to confirm the acceptability of the improved designs. Finally, entropy generation and pressure drops are analysed for varied air flow controlled by the fan power.

Suggested Citation

  • Bianco, Vincenzo & Szubel, Mateusz & Matras, Beata & Filipowicz, Mariusz & Papis, Karolina & Podlasek, Szymon, 2021. "CFD analysis and design optimization of an air manifold for a biomass boiler," Renewable Energy, Elsevier, vol. 163(C), pages 2018-2028.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:2018-2028
    DOI: 10.1016/j.renene.2020.10.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Rohan R. Pande & Milind P. Kshirsagar & Vilas R. Kalamkar, 2020. "Experimental and CFD analysis to study the effect of inlet area ratio in a natural draft biomass cookstove," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1897-1911, March.
    3. Szubel, Mateusz & Filipowicz, Mariusz & Matras, Beata & Podlasek, Szymon, 2018. "Air manifolds for straw-fired batch boilers – Experimental and numerical methods for improvement of selected operation parameters," Energy, Elsevier, vol. 162(C), pages 1003-1015.
    4. Khodaei, Hassan & Guzzomi, Ferdinando & Yeoh, Guan H. & Regueiro, Araceli & Patiño, David, 2017. "An experimental study into the effect of air staging distribution and position on emissions in a laboratory scale biomass combustor," Energy, Elsevier, vol. 118(C), pages 1243-1255.
    5. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    6. Ahn, Joon & Kim, Hyouck Ju, 2020. "Combustion process of a Korean wood pellet at a low temperature," Renewable Energy, Elsevier, vol. 145(C), pages 391-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szubel, M. & Papis-Frączek, K. & Podlasek, S., 2024. "Impact of the air supply system configuration on the straw combustion in small scale batch-boiler - experimental and numerical studies," Renewable Energy, Elsevier, vol. 220(C).
    2. Zadravec, Tomas & Rajh, Boštjan & Kokalj, Filip & Samec, Niko, 2021. "Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study," Renewable Energy, Elsevier, vol. 178(C), pages 532-548.
    3. Krzysztof Lalik & Mateusz Kozek & Szymon Podlasek & Rafał Figaj & Paweł Gut, 2021. "Q-Learning Neural Controller for Steam Generator Station in Micro Cogeneration Systems," Energies, MDPI, vol. 14(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
    10. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    11. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    12. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    13. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    14. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    15. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    16. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    17. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    18. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    19. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    20. Fariha Kanwal & Ashfaq Ahmed & Farrukh Jamil & Sikander Rafiq & H. M. Uzair Ayub & Moinuddin Ghauri & M. Shahzad Khurram & Shahid Munir & Abrar Inayat & Muhammad S. Abu Bakar & Surendar Moogi & Su Shi, 2021. "Co-Combustion of Blends of Coal and Underutilised Biomass Residues for Environmental Friendly Electrical Energy Production," Sustainability, MDPI, vol. 13(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:2018-2028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.