IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp928-938.html
   My bibliography  Save this article

Influence of the wind energy sector on thermal power plants in the Polish energy system

Author

Listed:
  • Simla, Tomasz
  • Stanek, Wojciech

Abstract

Wind as a renewable energy source is characterized by rapid growth of installed power in many countries, including Poland, where its share in the electricity production has grown over 25 times in the last decade, now reaching about 10%. Since renewable energy has priority in access to the grid, it forces the dispatchable coal-fired power plants to adjust their load. This causes additional consumption of primary energy due to more frequent shut-downs/start-ups and due to efficiency penalty when operating below nominal parameters. In this paper, actual data on the operation of Polish power plants in several years are analysed. The analysis, together with simulations of performance of the power system without the presence of wind energy, focuses on the influence of wind power plants on the utility ones. The results of simulations are additionally processed using the concept of thermo-ecological cost to compare the “operational” impact of wind farms on the power system with their “investment” environmental burden. A conclusion is that current share of wind energy at the level of 10% is enough to have an adverse effect on the coal power plants, but depending on the structure of the power system it may actually increase its overall efficiency.

Suggested Citation

  • Simla, Tomasz & Stanek, Wojciech, 2020. "Influence of the wind energy sector on thermal power plants in the Polish energy system," Renewable Energy, Elsevier, vol. 161(C), pages 928-938.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:928-938
    DOI: 10.1016/j.renene.2020.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    2. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    3. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2014. "The incentive to invest in thermal plants in the presence of wind generation," Energy Economics, Elsevier, vol. 43(C), pages 306-315.
    4. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    5. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    6. Stanek, Wojciech & Mendecka, Barbara & Lombardi, Lidia & Simla, Tomasz, 2018. "Environmental assessment of wind turbine systems based on thermo-ecological cost," Energy, Elsevier, vol. 160(C), pages 341-348.
    7. Gutiérrez-Martín, F. & Da Silva-Álvarez, R.A. & Montoro-Pintado, P., 2013. "Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system," Energy, Elsevier, vol. 61(C), pages 108-117.
    8. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    3. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    4. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    5. Sylwester Robak & Robert Raczkowski & Michał Piekarz, 2023. "Development of the Wind Generation Sector and Its Effect on the Grid Operation—The Case of Poland," Energies, MDPI, vol. 16(19), pages 1-16, September.
    6. Stanisław Tokarski & Małgorzata Magdziarczyk & Adam Smoliński, 2021. "Risk Management Scenarios for Investment Program Delays in the Polish Power Industry," Energies, MDPI, vol. 14(16), pages 1-10, August.
    7. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    8. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanek, Wojciech & Mendecka, Barbara & Lombardi, Lidia & Simla, Tomasz, 2018. "Environmental assessment of wind turbine systems based on thermo-ecological cost," Energy, Elsevier, vol. 160(C), pages 341-348.
    2. Doda, Baran & Fankhauser, Sam, 2020. "Climate policy and power producers: The distribution of pain and gain," Energy Policy, Elsevier, vol. 138(C).
    3. Nandeeta Neerunjun & Hubert Stahn, 2023. "Renewable energy support: pre-announced policies and (in)-efficiency," AMSE Working Papers 2335, Aix-Marseille School of Economics, France.
    4. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    5. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    6. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    7. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    8. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).
    9. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    10. Lyons, Selina & Whale, Jonathan & Wood, Justin, 2018. "Wind power variations during storms and their impact on balancing generators and carbon emissions in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 118(C), pages 1052-1063.
    11. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    12. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    13. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    14. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Wind power and CO2 emissions in the Irish market," Energy Economics, Elsevier, vol. 80(C), pages 48-58.
    15. McPherson, Madeleine & Harvey, L.D. Danny & Karney, Bryan, 2017. "System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework," Renewable Energy, Elsevier, vol. 113(C), pages 1019-1032.
    16. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    17. Levi, Peter G. & Pollitt, Michael G., 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Energy Policy, Elsevier, vol. 87(C), pages 48-59.
    18. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    19. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    20. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:928-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.