IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp701-711.html
   My bibliography  Save this article

Clean and efficient utilization of coal combined with corn straw by synergistic biodegradation

Author

Listed:
  • Guo, Hongyu
  • Zhao, Shufeng
  • Dong, Zhiwei
  • Wang, Qian
  • Xia, Daping
  • Jia, Jianbo
  • Yin, Xiangju
  • Yu, Hongfei

Abstract

To establish a process for cleaning and efficiently utilizing solid residues and residual liquid after co-fermentation of coal and corn straw, three coal samples combined with corn straw were used. Combustion tests were carried out using the solid residue to compare the changes in calorific value, slagging characteristics and air pollutant emission before and after fermentation. Biogas production experiments were performed using acclimated residual liquid to establish the biomethane production characteristics. Results show that the total calorific value of solid residue after co-fermentation of bituminous coal D, bituminous coal C and corn straw increased by 8.16% and 8.08%, respectively, compared to original samples. The slagging index also decreased during the combustion of solid residues. The diversity of bacterial community structure was the main causes for the significant reduction in air pollutant emissions from the combustion of solid residues. Acclimation experiments improved the removal rate of hemicelluloses from corn straw and increased biomethane production by 45.86%, 10.66% and 60.47%, respectively. This work can improve the clean conversion efficiency of coal and straw, not only reducing environmental pollution, but also transforming waste into clean energy, which has a positive impact on the environment and allows the sustainable use of resources.

Suggested Citation

  • Guo, Hongyu & Zhao, Shufeng & Dong, Zhiwei & Wang, Qian & Xia, Daping & Jia, Jianbo & Yin, Xiangju & Yu, Hongfei, 2020. "Clean and efficient utilization of coal combined with corn straw by synergistic biodegradation," Renewable Energy, Elsevier, vol. 161(C), pages 701-711.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:701-711
    DOI: 10.1016/j.renene.2020.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    3. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    4. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    5. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    6. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    7. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    8. Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
    9. Ma, Zherui & Wang, Jiangjiang & Dong, Fuxiang & Han, Zepeng & Tian, Lei & Yan, Rujing & Liang, Zhanwei, 2022. "Thermodynamic analysis of fuel-cell-based combined cooling, heating, and power system integrated solar energy and chemical looping hydrogen generation," Energy, Elsevier, vol. 238(PC).
    10. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    11. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    12. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    13. Jiang, Peng & Parvez, Ashak Mahmud & Meng, Yang & Xu, Meng-xia & Shui, Tian-chi & Sun, Cheng-gong & Wu, Tao, 2019. "Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process," Energy, Elsevier, vol. 187(C).
    14. He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
    15. Ullah, Kifayat & Sharma, Vinod Kumar & Ahmad, Mushtaq & Lv, Pengmei & Krahl, Jurgen & Wang, Zhongming & Sofia,, 2018. "The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3992-4008.
    16. Meng, Sai & Zulli, Paul & Yang, Chaohe & Wang, Zhe & Meng, Qingbo & Zhang, Guangqing, 2022. "Energy and exergy analyses of an intensified char gasification process," Energy, Elsevier, vol. 239(PD).
    17. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    18. Yidan Song & Qiaoqun Sun & Yu Zhang & Yaodong Da & Heming Dong & Hebo Zhang & Qian Du & Jianmin Gao, 2023. "Modeling and Optimization of Natural Gas CCHP System in the Severe Cold Region," Energies, MDPI, vol. 16(12), pages 1-18, June.
    19. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
    20. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:701-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.