IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp1176-1183.html
   My bibliography  Save this article

The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves

Author

Listed:
  • Hidar, Nadia
  • Ouhammou, Mourad
  • Mghazli, Safa
  • Idlimam, Ali
  • Hajjaj, Abdessamad
  • Bouchdoug, Mohamed
  • Jaouad, Abderrahim
  • Mahrouz, Mostafa

Abstract

Stevia is a natural non-caloric substitute to conventional sugar. The objective of this study was to investigate the effect of solar convective drying on kinetics and quality attributes of stevia leaves grown in Morocco. The evaluated drying temperatures were 50, 60, 70 and 80 °C with an air flow of 300 and 150 m3/h.

Suggested Citation

  • Hidar, Nadia & Ouhammou, Mourad & Mghazli, Safa & Idlimam, Ali & Hajjaj, Abdessamad & Bouchdoug, Mohamed & Jaouad, Abderrahim & Mahrouz, Mostafa, 2020. "The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves," Renewable Energy, Elsevier, vol. 161(C), pages 1176-1183.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:1176-1183
    DOI: 10.1016/j.renene.2020.07.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tunde-Akintunde, T.Y., 2011. "Mathematical modeling of sun and solar drying of chilli pepper," Renewable Energy, Elsevier, vol. 36(8), pages 2139-2145.
    2. Koukouch, Abdelghani & Idlimam, Ali & Asbik, Mohamed & Sarh, Brahim & Izrar, Boujemaa & Bostyn, Stéphane & Bah, Abdellah & Ansari, Omar & Zegaoui, Omar & Amine, Amina, 2017. "Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste," Renewable Energy, Elsevier, vol. 101(C), pages 565-574.
    3. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    4. Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
    5. Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    2. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    3. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang & Liu, Xianglong & Yin, Gaofei, 2022. "Quality study on different parts of Panax notoginseng root drying with a hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    2. Hamza, Lamsyehe & Mounir, Kouhila & Younes, Bahammou & Zakaria, Tagnamas & Haytem, Moussaoui & Hind, Mouhanni & Abdelkader, Lamharrar & Ali, Idlimam, 2020. "Physicochemical study of the conservation of Moroccan anchovies by convective solar drying," Renewable Energy, Elsevier, vol. 152(C), pages 44-54.
    3. Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
    4. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    5. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    6. Moussaoui, Haytem & Bahammou, Younes & Tagnamas, Zakaria & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali, 2021. "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renewable Energy, Elsevier, vol. 168(C), pages 131-140.
    7. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    9. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    10. Komolafe, O.M. & Hussein, J. B. & Adebayo, Q. & Abiona, O.O. & Oke, M.O., 2019. "Effect of Pretreatments on the Drying Characteristics and Quality of African Star Apple (Chrysophyllum albidum)," Agriculture and Food Sciences Research, Asian Online Journal Publishing Group, vol. 6(1), pages 145-154.
    11. Tagnamas, Zakaria & Bahammou, Younes & Kouhila, Mounir & Hilali, Soukaina & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method," Renewable Energy, Elsevier, vol. 146(C), pages 16-24.
    12. Monica Patricia Camas-Nafate & Peggy Alvarez-Gutiérrez & Edgar Valenzuela-Mondaca & Roger Castillo-Palomera & Yolanda del Carmen Perez-Luna, 2019. "Improved Agricultural Products Drying Through a Novel Double Collector Solar Device," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    13. Shaima A. Alnaqbi & Shamma Alasad & Haya Aljaghoub & Abdul Hai Alami & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2022. "Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa," Energies, MDPI, vol. 15(7), pages 1-27, March.
    14. Xiuqin Zhang & Xudong Shi & Yasir Khan & Majid Khan & Saba Naz & Taimoor Hassan & Chenchen Wu & Tahir Rahman, 2023. "The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    15. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    16. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    17. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    18. Bei, Jinlan & Wang, Chunyu, 2023. "Renewable energy resources and sustainable development goals: Evidence based on green finance, clean energy and environmentally friendly investment," Resources Policy, Elsevier, vol. 80(C).
    19. Babu, A.K. & Kumaresan, G. & Raj, V. Antony Aroul & Velraj, R., 2018. "Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 536-556.
    20. Tagnamas, Zakaria & Idlimam, Ali & Lamharrar, Abdelkader, 2023. "Predictive models of beetroot solar drying process through machine learning algorithms," Renewable Energy, Elsevier, vol. 219(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:1176-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.