IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001190.html
   My bibliography  Save this article

Quality study on different parts of Panax notoginseng root drying with a hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine

Author

Listed:
  • Kong, Decheng
  • Wang, Yunfeng
  • Li, Ming
  • Liang, Jingkang
  • Liu, Xianglong
  • Yin, Gaofei

Abstract

In order to improve the utilization rate of renewable energy in the drying system and further solve the problem of insufficient solar energy supply, a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine was proposed. The heat energy and electricity required for drying process are provided entirely by solar energy and wind energy. In this paper, the drying kinetics, colour parameters, microstructure, thermal stability and ginsenoside contents of different parts of Panax notoginseng dried using the drying system and open sun were studied. Additionally, the economic analysis on the drying system was also conducted on. The drying time using the dryer to dry the main root slices was shortened by 33.3% compared with natural sun drying when the moisture content decreased from the initial value to 13%. For rhizome and fibrous roots, the drying time was shortened by 74.1% and 53.8%, respectively, when the moisture content was decreased to approximately 15% and 12%. Meanwhile, the total saponin contents of the main root slices and rhizome in the dryer were higher, exhibiting average values of 9.1% and 12.2%, respectively. Thus, the drying system is suitable for drying Panax notoginseng, and the payback period was approximately 1.03 year.

Suggested Citation

  • Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang & Liu, Xianglong & Yin, Gaofei, 2022. "Quality study on different parts of Panax notoginseng root drying with a hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001190
    DOI: 10.1016/j.energy.2022.123216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    2. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    3. Gómez-de la Cruz, Francisco J. & Palomar-Carnicero, José M. & Hernández-Escobedo, Quetzalcoatl & Cruz-Peragón, Fernando, 2020. "Determination of the drying rate and effective diffusivity coefficients during convective drying of two-phase olive mill waste at rotary dryers drying conditions for their application," Renewable Energy, Elsevier, vol. 153(C), pages 900-910.
    4. Khanlari, Ataollah & Güler, Hande Özge & Tuncer, Azim Doğuş & Şirin, Ceylin & Bilge, Yaşar Can & Yılmaz, Yusuf & Güngör, Afşin, 2020. "Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application," Renewable Energy, Elsevier, vol. 145(C), pages 1677-1692.
    5. Li, K. & Zhang, Y. & Wang, Y.F. & El-Kolaly, W. & Gao, M. & Sun, W. & Li, M., 2021. "Effects of drying variables on the characteristic of the hot air drying for gastrodia elata: Experiments and multi-variable model," Energy, Elsevier, vol. 222(C).
    6. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    7. Sabareesh, V. & Milan, K. John & Muraleedharan, C. & Rohinikumar, B., 2021. "Improved solar drying performance by ultrasonic desiccant dehumidification in indirect forced convection solar drying of ginger with phase change material," Renewable Energy, Elsevier, vol. 169(C), pages 1280-1293.
    8. Malakar, Santanu & Arora, Vinkel Kumar & Nema, Prabhat K., 2021. "Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove," Renewable Energy, Elsevier, vol. 168(C), pages 568-580.
    9. Hidar, Nadia & Ouhammou, Mourad & Mghazli, Safa & Idlimam, Ali & Hajjaj, Abdessamad & Bouchdoug, Mohamed & Jaouad, Abderrahim & Mahrouz, Mostafa, 2020. "The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves," Renewable Energy, Elsevier, vol. 161(C), pages 1176-1183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    2. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    3. Xing, Tianyu & Luo, Xi & Li, Ming & Wang, Yunfeng & Deng, Zhihan & Yao, Muchi & Zhang, Wenxiang & Zhang, Zude & Gao, Meng, 2023. "Study on drying characteristics of Gentiana macrophylla under the interaction of temperature and relative humidity," Energy, Elsevier, vol. 273(C).
    4. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    5. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    2. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    3. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
    5. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    6. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    9. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    10. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    11. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    13. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    14. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Murali, S. & Amulya, P.R. & Alfiya, P.V. & Delfiya, D.S. Aniesrani & Samuel, Manoj P., 2020. "Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps," Renewable Energy, Elsevier, vol. 147(P1), pages 2417-2428.
    17. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    18. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    19. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    20. Kishk, Sameh S. & ElGamal, Ramadan A. & ElMasry, Gamal M., 2019. "Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products," Renewable Energy, Elsevier, vol. 133(C), pages 307-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.