IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp1373-1384.html
   My bibliography  Save this article

Material optimization of flexible blades for wind turbines

Author

Listed:
  • Cognet, V.
  • Courrech du Pont, S.
  • Thiria, B.

Abstract

Bioinspired flexible blades have been recently shown to significantly improve the versatility of horizontal-axis wind turbines, by widening their working range and increasing their efficiency. The aerodynamic and centrifugal forces bend the blade along its chord, varying the pitch angle by means of non-consuming mechanisms. Here we introduce a general method based on a universal scaling, which finds the optimal soft materials for the blades to maximize the overall turbine efficiency or rotational power, for any required geometry of classical horizontal-axis turbines. The optimization problem, which depends on various parameters, such as the wind velocity, the rotation rate, the density, the rigidity and the geometry of the blade, is reduced to only two dimensionless parameters: the Cauchy number and the centrifugal number. The blade-element momentum theory is coupled to a torsion spring-based model for the blade deformation. Taking into account realistic incoming wind-velocity distributions in the North Sea and a large wind-turbine geometry, we found a significant increase of the total harvested power, up to +35%. In addition, the optimal soft material corresponding to the maximal efficiency over the entire working range for a given wind turbine geometry is, within the limits of small blade deformations, scale-independent. Thus experiments on small wind turbines are a possible way to determine the optimal soft materials for larger ones. These flexible blades are found to be between 5% and 20% lighter than the current rigid blades.

Suggested Citation

  • Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1373-1384
    DOI: 10.1016/j.renene.2020.05.188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silas Alben & Michael Shelley & Jun Zhang, 2002. "Drag reduction through self-similar bending of a flexible body," Nature, Nature, vol. 420(6915), pages 479-481, December.
    2. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    3. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    4. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    5. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    6. Ming Liu & Lei Tan & Shuliang Cao, 2018. "Design Method of Controllable Blade Angle and Orthogonal Optimization of Pressure Rise for a Multiphase Pump," Energies, MDPI, vol. 11(5), pages 1-20, April.
    7. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    8. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koca, Kemal & Genç, Mustafa Serdar & Ertürk, Sevde, 2022. "Impact of local flexible membrane on power efficiency stability at wind turbine blade," Renewable Energy, Elsevier, vol. 197(C), pages 1163-1173.
    2. Gambuzza, Stefano & Pisetta, Gabriele & Davey, Thomas & Steynor, Jeffrey & Viola, Ignazio Maria, 2023. "Model-scale experiments of passive pitch control for tidal turbines," Renewable Energy, Elsevier, vol. 205(C), pages 10-29.
    3. Azael Duran Castillo & Juan C. Jauregui-Correa & Francisco Herbert & Krystel K. Castillo-Villar & Jesus Alejandro Franco & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno & Alfredo Alcayd, 2021. "The Effect of a Flexible Blade for Load Alleviation in Wind Turbines," Energies, MDPI, vol. 14(16), pages 1-15, August.
    4. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    3. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    4. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    5. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    6. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).
    7. Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    9. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    10. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    11. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    12. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    13. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    14. Pan He & Jian Xia, 2022. "Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method," Energies, MDPI, vol. 15(8), pages 1-18, April.
    15. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    16. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony & Kennedy, David M., 2015. "Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions," Energy, Elsevier, vol. 93(P2), pages 2483-2496.
    17. Xu, Jian & Wang, Longyan & Yuan, Jianping & Shi, Jiali & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Tan, Andy C.C., 2023. "A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades," Energy, Elsevier, vol. 282(C).
    18. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2020. "Similarity functions and a new k−ε closure for predicting stratified atmospheric surface layer flows in complex terrain," Renewable Energy, Elsevier, vol. 150(C), pages 907-917.
    19. Choudhury, Santanu & Sharma, Tushar & Shukla, K.K., 2017. "Effect of orthotropy ratio of the shear web on the aero-elasticity and torque generation of a hybrid wind turbine blade," Renewable Energy, Elsevier, vol. 113(C), pages 1378-1387.
    20. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1373-1384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.