IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v420y2002i6915d10.1038_nature01232.html
   My bibliography  Save this article

Drag reduction through self-similar bending of a flexible body

Author

Listed:
  • Silas Alben

    (New York University)

  • Michael Shelley

    (New York University)

  • Jun Zhang

    (New York University
    New York University)

Abstract

The classical theory of high-speed flow1 predicts that a moving rigid object experiences a drag proportional to the square of its speed. However, this reasoning does not apply if the object in the flow is flexible, because its shape then becomes a function of its speed—for example, the rolling up of broad tree leaves in a stiff wind2. The reconfiguration of bodies by fluid forces is common in nature, and can result in a substantial drag reduction that is beneficial for many organisms3,4. Experimental studies of such flow–structure interactions5 generally lack a theoretical interpretation that unifies the body and flow mechanics. Here we use a flexible fibre immersed in a flowing soap film to measure the drag reduction that arises from bending of the fibre by the flow. Using a model that couples hydrodynamics to bending, we predict a reduced drag growth compared to the classical theory. The fibre undergoes a bending transition, producing shapes that are self-similar; for such configurations, the drag scales with the length of self-similarity, rather than the fibre profile width. These predictions are supported by our experimental data.

Suggested Citation

  • Silas Alben & Michael Shelley & Jun Zhang, 2002. "Drag reduction through self-similar bending of a flexible body," Nature, Nature, vol. 420(6915), pages 479-481, December.
  • Handle: RePEc:nat:nature:v:420:y:2002:i:6915:d:10.1038_nature01232
    DOI: 10.1038/nature01232
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01232
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Qi & Yu Bai & Xin Cao & Erpeng Li, 2022. "The Deformation and Shear Vortex Width of Flexible Vegetation Roots in an Artificial Floating Bed Channel," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    2. J. Gaitan-Aroca & Fabio Sierra & Jose Ulises Castellanos Contreras, 2020. "Bio-Inspired Rotor Design Characterization of a Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(14), pages 1-22, July.
    3. Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
    4. Shifeng Fu & Yaqing Jin & Jin-Tae Kim & Zhongyu Mao & Yuan Zheng & Leonardo P. Chamorro, 2018. "On the Dynamics of Flexible Plates under Rotational Motions," Energies, MDPI, vol. 11(12), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:420:y:2002:i:6915:d:10.1038_nature01232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.