IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp184-194.html
   My bibliography  Save this article

Investigation into the effects of the earth’s magnetic field on the conversion efficiency of solar cells

Author

Listed:
  • Ndeto, Martin Paul
  • Wekesa, David Wafula
  • Kinyua, Robert
  • Njoka, Francis

Abstract

Solar PV technology is rarely used as a major source of power in most developing countries. This is partly attributable to the poor conversion efficiency which is less than 30% and high initial installation costs. This study investigates the variation of polycrystalline silicon (pc-Si) PV module parameters when subjected to a static magnetic field equivalent to the earth’s magnetic field. The magnitude of the magnetic field B is varied from 0 mT to 0.08 mT. An experimental probe on the variance of the pc-Si solar cell parameters when subjected to B showed that short circuit current (ISC) and current at maximum power point (IMPP) decreased noticeably while open circuit voltage (VOC) and voltage at maximum power point (VMPP) decreased slightly as a result of an increase in B. This led to a considerable decrease in the fill factor (FF) values and the maximum power (PMPP) which consequently led to a 0.21% decrease in the conversion efficiency (η) between the Equator, 0°, and the latitude 50° N/S. The findings revealed an increased module’s active area per kilo-watt of 0.08 m2/kW of electric power generated translating to installation cost increment of 1.31% due to decreased efficiency.

Suggested Citation

  • Ndeto, Martin Paul & Wekesa, David Wafula & Kinyua, Robert & Njoka, Francis, 2020. "Investigation into the effects of the earth’s magnetic field on the conversion efficiency of solar cells," Renewable Energy, Elsevier, vol. 159(C), pages 184-194.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:184-194
    DOI: 10.1016/j.renene.2020.05.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030848X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    2. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    3. Hui-Seon Kim & Ivan Mora-Sero & Victoria Gonzalez-Pedro & Francisco Fabregat-Santiago & Emilio J. Juarez-Perez & Nam-Gyu Park & Juan Bisquert, 2013. "Mechanism of carrier accumulation in perovskite thin-absorber solar cells," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    4. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    5. Kazuya Ando & Eiji Saitoh, 2012. "Observation of the inverse spin Hall effect in silicon," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ndeto, Martin Paul & Wekesa, David Wafula & Njoka, Francis & Kinyua, Robert, 2023. "Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 208(C), pages 481-491.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem Cuce & Pinar Mert Cuce & Shaik Saboor & Aritra Ghosh & Yahya Sheikhnejad, 2022. "Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    2. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    3. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    4. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    5. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    6. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    7. Chatzipanagi, Anatoli & Frontini, Francesco & Virtuani, Alessandro, 2016. "BIPV-temp: A demonstrative Building Integrated Photovoltaic installation," Applied Energy, Elsevier, vol. 173(C), pages 1-12.
    8. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    9. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    10. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    11. Aurel Gontean & Septimiu Lica & Szilard Bularka & Roland Szabo & Dan Lascu, 2017. "A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation," Energies, MDPI, vol. 11(1), pages 1-21, December.
    12. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    13. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    14. Roumpakias, Elias & Zogou, Olympia & Stamatelos, Anastassios, 2015. "Correlation of actual efficiency of photovoltaic panels with air mass," Renewable Energy, Elsevier, vol. 74(C), pages 70-77.
    15. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Zhang, Lei & Chen, Zhiqiao & Su, Jing & Li, Jingfa, 2019. "Data mining new energy materials from structure databases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 554-567.
    17. Goharian, Ali & Daneshjoo, Khosro & Shaeri, Jalil & Mahdavinejad, Mohammadjavad & Yeganeh, Mansour, 2023. "A designerly approach to daylight efficiency of central light-well; combining manual with NSGA-II algorithm optimization," Energy, Elsevier, vol. 276(C).
    18. Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
    19. Castanheira, André F.A. & Fernandes, João F.P. & Branco, P.J. Costa, 2018. "Demonstration project of a cooling system for existing PV power plants in Portugal," Applied Energy, Elsevier, vol. 211(C), pages 1297-1307.
    20. Muhammad Adil Khan & Byeonghun Ko & Esebi Alois Nyari & S. Eugene Park & Hee-Je Kim, 2017. "Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS): An Experimental Study and Comparative Analysis," Energies, MDPI, vol. 10(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:184-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.