IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2626-d757403.html
   My bibliography  Save this article

Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges

Author

Listed:
  • Erdem Cuce

    (Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering and Architecture, Zihni Derin Campus, Recep Tayyip Erdogan University, Rize 53100, Turkey
    Department of Mechanical Engineering, Faculty of Engineering and Architecture, Zihni Derin Campus, Recep Tayyip Erdogan University, Rize 53100, Turkey)

  • Pinar Mert Cuce

    (Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering and Architecture, Zihni Derin Campus, Recep Tayyip Erdogan University, Rize 53100, Turkey
    Department of Architecture, Faculty of Engineering and Architecture, Zihni Derin Campus, Recep Tayyip Erdogan University, Rize 53100, Turkey)

  • Shaik Saboor

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India)

  • Aritra Ghosh

    (College of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Penryn TR10 9FE, Cornwall, UK
    Environmental and Sustainability Institute, University of Exeter, Penryn TR10 9FE, Cornwall, UK)

  • Yahya Sheikhnejad

    (PICadvanced SA, Creative Science Park, Via do Conhecimento, Ed. Central, 3830-352 Ílhavo, Portugal
    Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Universidade de Aveiro, 3810-193 Aveiro, Portugal)

Abstract

Limited reserves of fossil fuels, rising environmental concerns, and a remarkable increase in electricity demand have led to the necessity of harnessing solar energy on a large scale. For this purpose, there has been a noticeable stimulation into photovoltaic power plants (PVPPs) over the last three decades, but the land requirement for PVPPs is still a handicap in many countries since valuable lands are considered for other purposes such as agriculture and livestock. For effective conservation of valuable lands and water resources, PVPPs are preferred to be installed on various water bodies such as oceans, seas, lagoons, lakes, rivers, dams, canals, wastewater treatment plants, irrigation ponds, fish farms, wineries, reservoirs, etc. PV systems on water bodies are called floating PVPPs, and they have outstanding advantages compared with land-based PVPPs including better energy generation owing to passive cooling effects, higher system efficiency and reliability, and lower dirt and dust accumulation on PV modules thus lower operating costs. There are also some significant environmental features provided by floating PVs. Shading effects due to PV coverage reduce water losses arising from evaporation. Moreover, algae growth is limited because of mitigated solar radiation, which yields better water quality. This review presents more insight on floating PVPPs in terms of several aspects such as electricity generation, system efficiency, reliability and sustainability, experimental applications and facilities in operation, water and carbon saving as well as challenges.

Suggested Citation

  • Erdem Cuce & Pinar Mert Cuce & Shaik Saboor & Aritra Ghosh & Yahya Sheikhnejad, 2022. "Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2626-:d:757403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamad Al-Widyan & Mohammad Khasawneh & Muna Abu-Dalo, 2021. "Potential of Floating Photovoltaic Technology and Their Effects on Energy Output, Water Quality and Supply in Jordan," Energies, MDPI, vol. 14(24), pages 1-13, December.
    2. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    3. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    4. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    5. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    6. Pouran, Hamid M., 2018. "From collapsed coal mines to floating solar farms, why China's new power stations matter," Energy Policy, Elsevier, vol. 123(C), pages 414-420.
    7. Erdem Cuce & Tulin Bali & Suphi Anil Sekucoglu, 2011. "Effects of passive cooling on performance of silicon photovoltaic cells," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 299-308, July.
    8. Redón Santafé, Miguel & Torregrosa Soler, Juan Bautista & Sánchez Romero, Francisco Javier & Ferrer Gisbert, Pablo S. & Ferrán Gozálvez, José Javier & Ferrer Gisbert, Carlos M., 2014. "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs," Energy, Elsevier, vol. 67(C), pages 246-255.
    9. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    10. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    11. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    12. Sun-Hee Kim & Soon-Jong Yoon & Wonchang Choi & Ki-Bong Choi, 2016. "Application of Floating Photovoltaic Energy Generation Systems in South Korea," Sustainability, MDPI, vol. 8(12), pages 1-9, December.
    13. Trapani, Kim & Millar, Dean L. & Smith, Helen C.M., 2013. "Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies," Renewable Energy, Elsevier, vol. 50(C), pages 879-888.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Nan & Yuanpeng Chi & Yingchun Jiang & Yikui Bai, 2024. "Wind Load and Wind-Induced Vibration of Photovoltaic Supports: A Review," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
    2. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    3. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    4. Changcheng Li & Haoran Li & Hao Yue & Jinfeng Lv & Jian Zhang, 2024. "Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    5. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    6. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    2. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    3. Fereshtehpour, Mohammad & Javidi Sabbaghian, Reza & Farrokhi, Ali & Jovein, Ehsan Bahrami & Ebrahimi Sarindizaj, Elham, 2021. "Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures," Renewable Energy, Elsevier, vol. 171(C), pages 1171-1187.
    4. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    5. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    6. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    7. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    8. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    9. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    10. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    14. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    15. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    16. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    17. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    18. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    19. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    20. Tanu Rizvi & Satya Prakash Dubey & Nagendra Tripathi & Gautam Srivastava & Satya Prakash Makhija & Md. Khaja Mohiddin, 2023. "FSPV-Grid System for an Industrial Subsection with PV Price Sensitivity Analysis," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2626-:d:757403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.