IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1526-d1362077.html
   My bibliography  Save this article

A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis

Author

Listed:
  • Ali Hassan

    (School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia)

  • Ali M. Nikbakht

    (School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia)

  • Sabrina Fawzia

    (School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia)

  • Prasad Yarlagadda

    (School of Engineering, University of Southern Queensland, Springfield 4300, Australia)

  • Azharul Karim

    (School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia)

Abstract

Supply disruptions, uncertainty, and unprecedented price rises of fossil fuels due to the recent pandemic and war have highlighted the importance of using renewable sources to meet energy demands. Solar air collectors (SACs) are major types of solar energy systems that can be utilized for space and water heating, drying, and thermal energy storage. Although there is sufficient documentation on the thermal analyses of SACs, no comprehensive reviews of the exergetic performance or qualitative insight on heat conversion are available. The primary objective of this article is to provide a comprehensive review on the optimum conditions at which the thermal performance of diverse types of solar air collectors is optimized. The effect of operating parameters such as temperature rise, flow rate, geometric parameters, solar radiation, and the Reynolds number on the thermal performance of SACs in terms of thermal hydraulic performance, energy, and exergy efficiencies has been reviewed adaptively. Beyond the operating parameters, a deep investigation is outlined to monitor fluid dynamics using analytical and computational fluid dynamics (CFDs) methodologies in the technology of SACs. In the third phase, thermodynamic irreversibility due to optical losses, thermal losses between absorber and environment, heat losses due to insulation, edge losses, and entropy generation are reported and discussed, which serve as the fundamental tools for optimization purposes.

Suggested Citation

  • Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-47, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1526-:d:1362077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2016. "Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate," Renewable Energy, Elsevier, vol. 96(PA), pages 233-243.
    2. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    3. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    4. Karim, M.A. & Perez, E. & Amin, Z.M., 2014. "Mathematical modelling of counter flow v-grove solar air collector," Renewable Energy, Elsevier, vol. 67(C), pages 192-201.
    5. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    6. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    7. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    8. Naphon, Paisarn, 2005. "On the performance and entropy generation of the double-pass solar air heater with longitudinal fins," Renewable Energy, Elsevier, vol. 30(9), pages 1345-1357.
    9. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    10. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    11. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    12. Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
    13. Benli, Hüseyin, 2013. "Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes," Renewable Energy, Elsevier, vol. 50(C), pages 58-67.
    14. Kabeel, A.E. & Abdelgaied, Mohamed, 2018. "Solar energy assisted desiccant air conditioning system with PCM as a thermal storage medium," Renewable Energy, Elsevier, vol. 122(C), pages 632-642.
    15. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    16. Moummi, N & Youcef-Ali, S & Moummi, A & Desmons, J.Y, 2004. "Energy analysis of a solar air collector with rows of fins," Renewable Energy, Elsevier, vol. 29(13), pages 2053-2064.
    17. Bensaci, Charaf-Eddine & Moummi, Abdelhafid & Sanchez de la Flor, Francisco J. & Rodriguez Jara, Enrique A. & Rincon-Casado, Alejandro & Ruiz-Pardo, Alvaro, 2020. "Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions," Renewable Energy, Elsevier, vol. 155(C), pages 1231-1244.
    18. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    2. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    4. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    6. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    7. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    8. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    9. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    10. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    11. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    12. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    13. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    14. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    15. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    16. Rai, Shalini & Chand, Prabha & Sharma, S.P., 2018. "Evaluation of thermo hydraulic effect on offset finned absorber solar air heater," Renewable Energy, Elsevier, vol. 125(C), pages 39-54.
    17. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    18. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    19. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    20. Hassan, Hamdy & Osman, Osman Omran & Abdelmoez, Mahmoud N. & abo-Elfadl, Saleh, 2023. "Energy and exergy evaluation of new design nabla shaped tubular solar air heater (∇ TSAH): Experimental investigation," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1526-:d:1362077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.