IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp107-125.html
   My bibliography  Save this article

Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system

Author

Listed:
  • Guo, Liang-Liang
  • Zhang, Yong-Bo
  • Zhang, Yan-Jun
  • Yu, Zi-Wang
  • Zhang, Jia-Ning

Abstract

In this work, the variation in granite mechanical property with temperature (30 °C–150 °C) under different confining stresses (0.1–60 MPa) is experimentally investigated specifically for reservoir secondary damage of hot dry rock through a series of triaxial tests. On the basis of the test results, the damage equations of elastic modulus and Poisson’s ratio of granite are obtained in accordance with damage theory. These equations are programmed into the TOUGHREACT-FLAC3D software. A field scale simulation is conducted to analyze the effect of secondary damage on the final generated electricity. The results indicated that as temperature and confining pressure gradually increase, the expansion direction of fracture turns from vertical to oblique and decreases to a single fracture plane. The mechanical properties of rock are continuously weakened with the increase in temperature. The confining pressure exerts a positive influence on elastic modulus and Poisson’s ratio of granite. The rock property around the discharge section of injection well is damaged significantly and is fractured because of the high temperature difference. The reservoir secondary damage decreases the reservoir temperature gradually, thereby reducing the generated power.

Suggested Citation

  • Guo, Liang-Liang & Zhang, Yong-Bo & Zhang, Yan-Jun & Yu, Zi-Wang & Zhang, Jia-Ning, 2018. "Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system," Renewable Energy, Elsevier, vol. 126(C), pages 107-125.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:107-125
    DOI: 10.1016/j.renene.2018.02.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    2. Bujakowski, Wiesław & Barbacki, Antoni & Miecznik, Maciej & Pająk, Leszek & Skrzypczak, Robert & Sowiżdżał, Anna, 2015. "Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area," Renewable Energy, Elsevier, vol. 80(C), pages 441-453.
    3. Chandrasiri Ekneligoda, Thushan & Min, Ki-Bok, 2014. "Determination of optimum parameters of doublet system in a horizontally fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 65(C), pages 152-160.
    4. Jiang, Peixue & Li, Xiaolu & Xu, Ruina & Zhang, Fuzhen, 2016. "Heat extraction of novel underground well pattern systems for geothermal energy exploitation," Renewable Energy, Elsevier, vol. 90(C), pages 83-94.
    5. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    6. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    7. Huang, Xiaoxue & Zhu, Jialing & Niu, Chengke & Li, Jun & Hu, Xia & Jin, Xianpeng, 2014. "Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China," Energy, Elsevier, vol. 75(C), pages 360-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    2. Ning Li & Heping Xie & Ziqi Gao & Cunbao Li, 2022. "Study on the Hydraulic Fracturing Failure Behaviour of Granite and Its Comparison with Gas Fracturing," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    3. Yuan Zhao & Lingfeng Shu & Shunyi Chen & Jun Zhao & Liangliang Guo, 2022. "Optimization Design of Multi-Factor Combination for Power Generation from an Enhanced Geothermal System by Sensitivity Analysis and Orthogonal Test at Qiabuqia Geothermal Area," Sustainability, MDPI, vol. 14(12), pages 1-35, June.
    4. Guo, Liang-Liang & Zhang, Yong-Bo & Wang, Zhi-Chao & Zeng, Jian & Zhang, Yan-Jun & Zhang, Zhi-Xiang, 2020. "Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 813-831.
    5. Huang, Yibin & Zhang, Yanjun & Yu, Ziwang & Ma, Yueqiang & Zhang, Chi, 2019. "Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 846-855.
    6. Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.
    7. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    8. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    9. Yangchun Wu & Linqi Huang & Xibing Li & Yide Guo & Huilin Liu & Jiajun Wang, 2022. "Effects of Strain Rate and Temperature on Physical Mechanical Properties and Energy Dissipation Features of Granite," Mathematics, MDPI, vol. 10(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    2. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    3. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    4. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    5. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    6. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    7. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    8. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    9. Huang, Yibin & Zhang, Yanjun & Yu, Ziwang & Ma, Yueqiang & Zhang, Chi, 2019. "Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 846-855.
    10. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    12. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    13. Zhang, Yu & Zhang, Yanjun & Yu, Hai & Li, Jianming & Xie, Yangyang & Lei, Zhihong, 2020. "Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models," Renewable Energy, Elsevier, vol. 153(C), pages 564-579.
    14. Chi Yao & Yulong Shao & Jianhua Yang, 2018. "Numerical Investigation on the Influence of Areal Flow on EGS Thermal Exploitation Based on the 3-D T-H Single Fracture Model," Energies, MDPI, vol. 11(11), pages 1-19, November.
    15. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    16. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    18. Guo, Tiankui & Tang, Songjun & Sun, Jiang & Gong, Facheng & Liu, Xiaoqiang & Qu, Zhanqing & Zhang, Wei, 2020. "A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 258(C).
    19. Zhang, Wei & Guo, Tian-kui & Qu, Zhan-qing & Wang, Zhiyuan, 2019. "Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective," Energy, Elsevier, vol. 178(C), pages 508-521.
    20. Benjamin G Schultz & Catherine J Stevens & Peter E Keller & Barbara Tillmann, 2013. "A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:107-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.