IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v17y1992i8p777-786.html
   My bibliography  Save this article

The status of hot dry rock as an energy source

Author

Listed:
  • Haraden, John

Abstract

Hot dry rock (HDR) is a deeply buried crustal rock at a usefully high temperature. Current engineering designs plan to tap its heat by drilling a wellbore, fracturing or stimulating pre-existing joints around the wellbore, and directionally drilling another wellbore through the fracture network. Cold water then flows down one wellbore, pushes through the fractured rock, warms, returns up the other wellbore, and drives a power-plant. The major technical uncertainty is establishing the fracture network between the two wellbores. If adequate connectivity can be established and sufficiently large fracture-surface areas can be exposed between the two wellbores, HDR can be a competitive source of electricity.

Suggested Citation

  • Haraden, John, 1992. "The status of hot dry rock as an energy source," Energy, Elsevier, vol. 17(8), pages 777-786.
  • Handle: RePEc:eee:energy:v:17:y:1992:i:8:p:777-786
    DOI: 10.1016/0360-5442(92)90121-F
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429290121F
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(92)90121-F?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendriks, C.A. & Blok, K. & Turkenburg, W.C., 1991. "Technology and cost of recovering and storing carbon dioxide from an integrated-gasifier, combined-cycle plant," Energy, Elsevier, vol. 16(11), pages 1277-1293.
    2. Booras, G.S. & Smelser, S.C., 1991. "An engineering and economic evaluation of CO2 removal from fossil-fuel-fired power plants," Energy, Elsevier, vol. 16(11), pages 1295-1305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Chenchen & Wang, Huaijiu & Jing, Zefeng, 2021. "Investigation of heat extraction with flowing CO2 from hot dry rock by numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 242-253.
    2. Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
    3. Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.
    4. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    5. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.
    2. Howard J. Herzog, 1996. "CO2 Mitigation Strategies: Perspectives on the Capture and Sequestration Option," Energy & Environment, , vol. 7(2), pages 223-236, March.
    3. Vassos, Spyros & Vlachou, Andriana, 1997. "Investigating strategies to reduce CO2 emissions from the electricity sector: the case of Greece," Energy Policy, Elsevier, vol. 25(3), pages 327-336, February.
    4. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    5. Nakićenović, Nebojša & John, Aviott, 1991. "CO2 reduction and removal: Measures for the next century," Energy, Elsevier, vol. 16(11), pages 1347-1377.
    6. Rong Li & Xiao-Sen Li & Zhao-Yang Chen & Yu Zhang & Chun-Gang Xu & Zhi-Ming Xia, 2018. "Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO 2 Capture," Energies, MDPI, vol. 11(2), pages 1-12, February.
    7. Page, S.C. & Williamson, A.G. & Mason, I.G., 2009. "Carbon capture and storage: Fundamental thermodynamics and current technology," Energy Policy, Elsevier, vol. 37(9), pages 3314-3324, September.
    8. Bode, Sven & Jung, Martina, 2004. "On the Integration of Carbon Capture and Storage into the International Climate Regime," Discussion Paper Series 26279, Hamburg Institute of International Economics.
    9. Bode, Sven & Jung, Martina, 2004. "On the Integration of Carbon Capture and Storage into the International Climate Regime," HWWA Discussion Papers 303, Hamburg Institute of International Economics (HWWA).
    10. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    11. Kheshgi, Haroon S. & Prince, Roger C., 2005. "Sequestration of fermentation CO2 from ethanol production," Energy, Elsevier, vol. 30(10), pages 1865-1871.
    12. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    13. Saraf, Shubham & Bera, Achinta, 2021. "A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    15. Tzimas, Evangelos & Peteves, Stathis D., 2005. "The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term," Energy, Elsevier, vol. 30(14), pages 2672-2689.
    16. Bai, Hsunling & Wei, Jong-Hourm, 1996. "The CO2 mitigation options for the electric sector. A case study of Taiwan," Energy Policy, Elsevier, vol. 24(3), pages 221-228, March.
    17. Tao Wang & Wei Yu & Mengxiang Fang & Hui He & Qunyang Xiang & Qinhui Ma & Menglin Xia & Zhongyang Luo & Kefa Cen, 2015. "Wetted‐wall column study on CO 2 absorption kinetics enhancement by additive of nanoparticles," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 682-694, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:17:y:1992:i:8:p:777-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.