IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp1067-1075.html
   My bibliography  Save this article

Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation

Author

Listed:
  • Fang, Wei
  • Zhao, Lei
  • He, Xuan
  • Chen, Hui
  • Li, Weixin
  • Zeng, Xianghui
  • Chen, Xiaodong
  • Shen, Yue
  • Zhang, Wenhao

Abstract

Solar steam generation is a promising way for the harvesting and conversion of solar illumination. Heat localization systems have opened a new route to enhance the solar steam efficiency with localizing the absorbed solar energy and minimizing the heat losses. Many carbon-based, organic and plasmonic absorbers have been developed to achieve high-efficiency vapor evaporation in the past years. To provide a low cost and operability strategy, the carbonized rice husk, a biogenic carbon, is first used to construct a three-dimensional (3D) foam absorber in this paper. By employing surfactant foaming method, many micron pore channels are formed to ensure convenient water transfer. Meanwhile, due to the multiple internal reflections of light-rays in these cross pores, the light absorption can be enhanced up to ∼92%. Under a solar intensity of 1 kW m−2, the foam absorber achieves a solar steam conversion efficiency at ∼71%. This work not only represents an original exploration concerning with carbonized rice husk absorber, but also provides a possible strategy for the exploitation of other powdery solar-thermal agents in this field.

Suggested Citation

  • Fang, Wei & Zhao, Lei & He, Xuan & Chen, Hui & Li, Weixin & Zeng, Xianghui & Chen, Xiaodong & Shen, Yue & Zhang, Wenhao, 2020. "Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation," Renewable Energy, Elsevier, vol. 151(C), pages 1067-1075.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1067-1075
    DOI: 10.1016/j.renene.2019.11.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931804X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi Ghasemi & George Ni & Amy Marie Marconnet & James Loomis & Selcuk Yerci & Nenad Miljkovic & Gang Chen, 2014. "Solar steam generation by heat localization," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    3. Zamzamian, Amirhossein & KeyanpourRad, Mansoor & KianiNeyestani, Maryam & Jamal-Abad, Milad Tajik, 2014. "An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 71(C), pages 658-664.
    4. Jarimi, Hasila & Abu Bakar, Mohd Nazari & Othman, Mahmod & Din, Mahadzir Hj, 2016. "Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model," Renewable Energy, Elsevier, vol. 85(C), pages 1052-1067.
    5. Lee, Gang-Juan & Anandan, Sambandam & Masten, Susan J. & Wu, Jerry J., 2016. "Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation," Renewable Energy, Elsevier, vol. 89(C), pages 18-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingmiao & Qin, Yi & Jia, Feifei & Li, Yanmei & Song, Shaoxian, 2021. "Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation," Renewable Energy, Elsevier, vol. 163(C), pages 146-153.
    2. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    3. Zeng, Long & Deng, Daxiang & Zhu, Linye & Wang, Huimin & Zhang, Zhenkun & Yao, Yingxue, 2023. "Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation," Energy, Elsevier, vol. 273(C).
    4. Li, Zhijing & Lei, Hui & Mu, Zijun & Zhang, Yuan & Zhang, Jingquan & Zhou, Yigang & Xie, Huaqing & Yu, Wei, 2022. "Reduced graphene oxide composite fiber for solar-driven evaporation and seawater desalination," Renewable Energy, Elsevier, vol. 191(C), pages 932-942.
    5. Gnanasekaran, Arulmurugan & Rajaram, Kamatchi, 2024. "Rational design of different interfacial evaporators for solar steam generation: Recent development, fabrication, challenges and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    7. Zhang, Wei & Zheng, Tuo & Zhu, Haiguang & Wu, Daxiong & Zhang, Canying & Zhu, Haitao, 2022. "Insight into the role of the channel in photothermal materials for solar interfacial water evaporation," Renewable Energy, Elsevier, vol. 193(C), pages 706-714.
    8. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    9. Zhang, Zhen & Xu, Yousen & Ma, Tongye & Sèbe, Gilles & Niu, Yue & Wang, Yilong & Tang, Biao & Zhou, Guofu, 2024. "Bio-based interfacial solar steam generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Chen, Yanjun & Fu, Shijin & Tao, Qinghe & Liu, Xiuliang & Li, Changzheng & He, Deqiang, 2024. "Experimental study of electric field enhancing the vapor production of the solar interfacial evaporator," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhaozixuan & Gong, Junyao & Zhang, Chunhua & Tang, Wenyang & Wei, Bangyang & Wang, Jiandong & Fu, Zhuan & Li, Li & Li, Wenbin & Xia, Liangjun, 2023. "Hierarchically porous carbonized Pleurotus eryngii based solar steam generator for efficient wastewater purification," Renewable Energy, Elsevier, vol. 216(C).
    2. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    3. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    4. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    5. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    6. Bashiri, Robabeh & Mohamed, Norani Muti & Kait, Chong Fai & Sufian, Suriati & Kakooei, Saied & Khatani, Mehboob & Gholami, Zahra, 2016. "Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell," Renewable Energy, Elsevier, vol. 99(C), pages 960-970.
    7. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    8. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    9. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    10. Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    11. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    12. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    13. Chen, Yingxu & Ji, Xu & Lv, Guanchao & Jia, Yicong & Yang, Bianfeng & Han, Jingyang, 2023. "Study on compound parabolic concentrating vaporized desalination system with preheating and heat recovery," Energy, Elsevier, vol. 276(C).
    14. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    15. Luo, Xiao & Wu, Dongxu & Huang, Congliang & Rao, Zhonghao, 2019. "Skeleton double layer structure for high solar steam generation," Energy, Elsevier, vol. 183(C), pages 1032-1039.
    16. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
    18. Nicolás Velázquez-Limón & Ricardo López-Zavala & Luis Hernández-Callejo & Jesús A. Aguilar-Jiménez & Sara Ojeda-Benítez & Juan Ríos-Arriola, 2020. "Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System," Energies, MDPI, vol. 13(15), pages 1-18, August.
    19. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    20. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1067-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.