Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.12.109
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nagendranatha Reddy, C. & Venkata Mohan, S., 2016. "Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater," Renewable Energy, Elsevier, vol. 98(C), pages 188-196.
- Alatraktchi, Fatima AlZahra’a & Zhang, Yifeng & Angelidaki, Irini, 2014. "Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community," Applied Energy, Elsevier, vol. 116(C), pages 216-222.
- Modestra, J. Annie & Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment," Renewable Energy, Elsevier, vol. 98(C), pages 178-187.
- Hindatu, Y. & Annuar, M.S.M. & Gumel, A.M., 2017. "Mini-review: Anode modification for improved performance of microbial fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 236-248.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
- Jayanthi Velayudhan & Sangeetha Subramanian, 2023. "Development of Manganese-Coated Graphite Electrode in a Dual-Chambered Fuel Cell for Selenite Removal and Bio-Electricity Generation from Wastewater Effluent by Bacillus cereus," Energies, MDPI, vol. 16(6), pages 1-15, March.
- Hou, Junbo & Yang, Min & Zhang, Junliang, 2020. "Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 155(C), pages 1355-1371.
- Hu, Xiaoyi & Tan, Xinru & Shi, Xiaomin & Liu, Wenjun & Ouyang, Tiancheng, 2023. "An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation," Applied Energy, Elsevier, vol. 336(C).
- Irfan, Muhammad & Liu, Xianhua & Li, Shengling & Khan, Izhar Ullah & Li, Yang & Wang, Jiao & Wang, Xin & Du, Xiwen & Wang, Guangyi & Zhang, Pingping, 2020. "High-performance glucose fuel cell with bimetallic Ni–Co composite anchored on reduced graphene oxide as anode catalyst," Renewable Energy, Elsevier, vol. 155(C), pages 1118-1126.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Yingzheng & Qian, Fengyu & Huang, Yuankai & Sifat, Iram & Zhang, Chengwu & Depasquale, Alex & Wang, Lei & Li, Baikun, 2021. "Miniature microbial fuel cells integrated with triggered power management systems to power wastewater sensors in an uninterrupted mode," Applied Energy, Elsevier, vol. 302(C).
- Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
- Aritro Banerjee & Rajnish Kaur Calay & Mohamad Mustafa, 2022. "Review on Material and Design of Anode for Microbial Fuel Cell," Energies, MDPI, vol. 15(6), pages 1-17, March.
- Liping Fan & Yaobin Xi, 2021. "Effect of Polypyrrole-Fe 3 O 4 Composite Modified Anode and Its Electrodeposition Time on the Performance of Microbial Fuel Cells," Energies, MDPI, vol. 14(9), pages 1-10, April.
- Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
- Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
- Xu, Haitao & Du, Yanan & Chen, Ye & Wen, Qing & Lin, Cunguo & Zheng, Jiyong & Qiu, Zhenghui, 2022. "Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode," Renewable Energy, Elsevier, vol. 183(C), pages 242-250.
- Dawid Nosek & Tomasz Mikołajczyk & Agnieszka Cydzik-Kwiatkowska, 2023. "Anode Modification with Fe 2 O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
- Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
- Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
- Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
- Gajda, Iwona & Greenman, John & Ieropoulos, Ioannis, 2020. "Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder," Applied Energy, Elsevier, vol. 262(C).
- Arun, S. & Sinharoy, Arindam & Pakshirajan, Kannan & Lens, Piet N.L., 2020. "Algae based microbial fuel cells for wastewater treatment and recovery of value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
- Mohamed, Hend Omar & Talas, Sawsan Abo & Sayed, Enas T. & Park, Sung-Gwan & Eisa, Tasnim & Abdelkareem, Mohammad Ali & Fadali, Olfat A. & Chae, Kyu-Jung & Castaño, Pedro, 2021. "Enhancing power generation in microbial fuel cell using tungsten carbide on reduced graphene oxide as an efficient anode catalyst material," Energy, Elsevier, vol. 229(C).
- Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- He, Yuting & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Pang, Yuan & Liao, Qiang, 2024. "Nano zero-valent iron functioned 3D printing graphene aerogel electrode for efficient solar-driven biocatalytic methane production," Renewable Energy, Elsevier, vol. 224(C).
- Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
- Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
More about this item
Keywords
SnSb electrocatalyst; Reduced graphene oxide; Bio-catalyst; Microbial fuel cell; Bio-electricity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:156-166. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.