IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007389.html
   My bibliography  Save this article

Epoxidation of Camelina sativa oil methyl esters as a second-generation biofuel with thermodynamic calculations

Author

Listed:
  • Hájek, Martin
  • Kocián, David
  • Hájek, Tomáš
  • Lukeš, Vladimír
  • Klein, Erik

Abstract

The epoxidation of methyl esters found in Camelina sativa (CS) non-edible oil — largely containing unsaturated fatty acids — was performed. Epoxides are known to be used in biopolymer formation and CO2 capture. This study distinctively demonstrates epoxidation process through a combination of statistical methods and quantum chemical thermodynamic calculations. Esters produced along with glycerol during transesterification of vegetable oils can be used efficiently through epoxidation. Epoxidation products synthesized at various reaction conditions (including oil refinement) were analyzed through gas chromatography with mass spectrometry. According to the statistical analysis, the reaction time and temperature had the highest effect on the composition of products and oil refining is unnecessary. Moreover, iodine values (ester conversion) were determined without the use of chemicals through Raman spectroscopy. The study findings indicate CS epoxidation to be an environment-friendly process.

Suggested Citation

  • Hájek, Martin & Kocián, David & Hájek, Tomáš & Lukeš, Vladimír & Klein, Erik, 2024. "Epoxidation of Camelina sativa oil methyl esters as a second-generation biofuel with thermodynamic calculations," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007389
    DOI: 10.1016/j.renene.2024.120670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oni, Babalola Aisosa & Oluwatosin, David, 2020. "Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 725-734.
    2. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir & Cesur, Cuneyt & Gokdogan, Osman, 2016. "Biodiesel production potential from oil seeds in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 842-851.
    3. Shila, Jacob & Johnson, Mary E., 2021. "Techno-economic analysis of Camelina-derived hydroprocessed renewable jet fuel within the US context," Applied Energy, Elsevier, vol. 287(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    2. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    3. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    5. Elnajjar, E. & Al-Zuhair, S. & Hasan, S. & Almardeai, S. & Al Omari, S.A.B. & Hilal-Alnaqbi, A., 2020. "Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production," Energy, Elsevier, vol. 213(C).
    6. Ornella Chiavola & Fulvio Palmieri & Domenico Mario Cavallo, 2023. "On the Increase in the Renewable Fraction in Diesel Blends using Aviation Fuel in a Common Rail Engine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    7. Viswanathan, Vinoth Kannan & Kaladgi, Abdul Razak & Thomai, Pushparaj & Ağbulut, Ümit & Alwetaishi, Mamdooh & Said, Zafar & Shaik, Saboor & Afzal, Asif, 2022. "Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends," Renewable Energy, Elsevier, vol. 198(C), pages 549-567.
    8. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    9. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    10. Singh, Deepak Kumar & Tirkey, Jeewan Vachan, 2022. "Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas," Energy, Elsevier, vol. 238(PC).
    11. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    12. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    13. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    14. Paneerselvam, Purushothaman & Panithasan, Mebin Samuel & Venkadesan, Gnanamoorthi, 2024. "RSM optimization of ultrasound-assisted melia dubia oil extraction with green solvents and their suitability for diesel engine applications," Renewable Energy, Elsevier, vol. 222(C).
    15. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    16. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Yuan, Wenqiao & Seifi, Mohammad Reza & Karimi, Mahmoud, 2020. "Desirability function approach for optimization of enzymatic transesterification catalyzed by lipase immobilized on mesoporous magnetic nanoparticles," Renewable Energy, Elsevier, vol. 158(C), pages 253-262.
    17. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    18. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    19. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    20. Ismail, Tamer M. & Lu, Ding & Ramzy, Khaled & Abd El-Salam, M. & Yu, Guangsuo & Elkady, M.A., 2019. "Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.