IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1306-1317.html
   My bibliography  Save this article

Comparative critique on the design parameters and their effect on the performance of S-rotors

Author

Listed:
  • Al-Kayiem, Hussain H.
  • Bhayo, Bilawal A.
  • Assadi, Mohsen

Abstract

S-rotors, which currently have numerous configurations, after the introduction of the early type by Savonius, are low-cost and simple devices used to harness wind energy for stand-alone power systems. Although the power coefficient of S-rotors is comparatively low, geometric parameters, such as overlap ratio, aspect ratio, number of blades, number of stages, and blade profile, are highly affect its performance. Optimization of the rotor design requires further understanding on how each parameter influences the rotor performance. Therefore, this comparative critique on the design parameters is conducted to highlight the performance improvement of S-rotors via the optimization of the geometric parameters. In addition, cost analysis on the small scale wind power generation has been overviewed. The influence, of the modification of the blade profiles and flow concentration setups, on the performance is also discussed with the aid of drawings, comparison table, and graphical representations. The critique on the dynamic and static characteristics of S-rotors is presented in this study to improve the characteristics of S-rotors as stand-alone electric power systems for remote rural communities. The average Cp of S-rotors under open flow conditions is ranging from 0.037 to 0.37. However, the Cp of S-rotors with external flow guides can reach up to 0.52.

Suggested Citation

  • Al-Kayiem, Hussain H. & Bhayo, Bilawal A. & Assadi, Mohsen, 2016. "Comparative critique on the design parameters and their effect on the performance of S-rotors," Renewable Energy, Elsevier, vol. 99(C), pages 1306-1317.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1306-1317
    DOI: 10.1016/j.renene.2016.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    2. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Performance tests on helical Savonius rotors," Renewable Energy, Elsevier, vol. 34(3), pages 521-529.
    3. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    4. Saha, U.K. & Rajkumar, M. Jaya, 2006. "On the performance analysis of Savonius rotor with twisted blades," Renewable Energy, Elsevier, vol. 31(11), pages 1776-1788.
    5. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    6. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    7. Damak, A. & Driss, Z. & Abid, M.S., 2013. "Experimental investigation of helical Savonius rotor with a twist of 180°," Renewable Energy, Elsevier, vol. 52(C), pages 136-142.
    8. Menet, J.-L., 2004. "A double-step Savonius rotor for local production of electricity: a design study," Renewable Energy, Elsevier, vol. 29(11), pages 1843-1862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    3. Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    4. Bhayo, Bilawal A. & Al-Kayiem, Hussain H., 2017. "Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system," Energy, Elsevier, vol. 138(C), pages 752-763.
    5. Heejeon Im & Bumsuk Kim, 2022. "Power Performance Analysis Based on Savonius Wind Turbine Blade Design and Layout Optimization through Rotor Wake Flow Analysis," Energies, MDPI, vol. 15(24), pages 1-17, December.
    6. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    2. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    3. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    5. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    6. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    7. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    8. Jeon, Keum Soo & Jeong, Jun Ik & Pan, Jae-Kyung & Ryu, Ki-Wahn, 2015. "Effects of end plates with various shapes and sizes on helical Savonius wind turbines," Renewable Energy, Elsevier, vol. 79(C), pages 167-176.
    9. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    10. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    11. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    12. Victor Mendoza & Eirini Katsidoniotaki & Hans Bernhoff, 2020. "Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades," Energies, MDPI, vol. 13(8), pages 1-16, April.
    13. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    14. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    15. Damak, A. & Driss, Z. & Abid, M.S., 2013. "Experimental investigation of helical Savonius rotor with a twist of 180°," Renewable Energy, Elsevier, vol. 52(C), pages 136-142.
    16. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Maaloul, Makram & Abid, Mohamed Salah, 2016. "Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel," Energy, Elsevier, vol. 113(C), pages 894-908.
    17. Grönman, Aki & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2019. "Experimental and analytical analysis of vaned savonius turbine performance under different operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 864-872.
    18. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    19. Can Kang & Xin Yang & Yuli Wang, 2013. "Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor," Energies, MDPI, vol. 6(6), pages 1-18, May.
    20. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1306-1317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.