IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p695-704.html
   My bibliography  Save this article

Mechanistic study of the catalytic transfer hydrogenation of biodiesel catalyzed by Raney-Ni under microwave heating

Author

Listed:
  • Zhang, Linye
  • Xin, Zongwu
  • Liu, Zihan
  • Wei, Guangtao
  • Li, Zhongmin
  • Ou, Yuning

Abstract

The use of microwave heating (MH) constitutes a promising way to upgrade biodiesel via catalytic transfer hydrogenation (CTH) catalyzed by Raney-Ni. However, mechanistic reports on this reaction are rare and the mechanisms involved in CTH process remains unclear. Herein, we presented a thorough mechanistic study of CTH of Jatropha oil biodiesel catalyzed by Raney-Ni under MH, using isopropyl alcohol as hydrogen donor and water as solvent. The intensification effect under microwave radiation has been studied from three aspects of catalyst, water, and hydrogen donor. It was found that microwave made an adverse effect on the activity of Raney-Ni. The solvent of water could provide hydrogen to some extent for the CTH of biodiesel, and the influence of Raney-Ni from microwave radiation had a positive role for the water to provide hydrogen during CTH reaction. Under microwave irradiation, the activity of isopropyl alcohol would be enhanced, and the transfer of hydrogen atoms from hydrogen donors to hydrogen acceptors became easy. Based on the characterization of catalyst by SEM, XRD, FTIR and TGA, it was found that the reason for the catalyst deactivation was mainly the carbonaceous deposits of fatty acid methanol esters (FAMEs) on the surface of the catalyst. A schematic representation of mechanism of microwave-assisted CTH has been presented. Furthermore, combining theory of heterogeneous catalytic process with mechanism of six-membered cyclic transition state, the reaction course for the CTH of Jatropha oil biodiesel under microwave heating has been explained successfully. Lastly, the performance improvement of the upgraded Jatropha oil biodiesel was briefly analyzed in view of composition change of biodiesel. Overall, our results provide a systematic understanding of CTH of biodiesel catalyzed by Raney-Ni under microwave heating, and our findings help to develop a green technology for the upgrading of biodiesel in industry.

Suggested Citation

  • Zhang, Linye & Xin, Zongwu & Liu, Zihan & Wei, Guangtao & Li, Zhongmin & Ou, Yuning, 2020. "Mechanistic study of the catalytic transfer hydrogenation of biodiesel catalyzed by Raney-Ni under microwave heating," Renewable Energy, Elsevier, vol. 147(P1), pages 695-704.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:695-704
    DOI: 10.1016/j.renene.2019.09.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    2. Louhasakul, Yasmi & Cheirsilp, Benjamas & Maneerat, Suppasil & Prasertsan, Poonsuk, 2019. "Potential use of flocculating oleaginous yeasts for bioconversion of industrial wastes into biodiesel feedstocks," Renewable Energy, Elsevier, vol. 136(C), pages 1311-1319.
    3. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    4. Jain, Siddharth & Sharma, M.P., 2010. "Biodiesel production from Jatropha curcas oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3140-3147, December.
    5. Mohadesi, Majid & Aghel, Babak & Maleki, Mahmoud & Ansari, Ahmadreza, 2019. "Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor," Renewable Energy, Elsevier, vol. 136(C), pages 677-682.
    6. Doyle, Aidan M. & Albayati, Talib M. & Abbas, Ammar S. & Alismaeel, Ziad T., 2016. "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin," Renewable Energy, Elsevier, vol. 97(C), pages 19-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Feiyi & Wang, Yue & Zhang, Junhua & Liu, Huai & Peng, Lincai, 2023. "Construction of HfO2 nanoparticles with rich hydroxyl group for the efficient catalytic transfer hydrogenation of furfural," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    3. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    4. Kuljiraseth, Jirayu & Kumpradit, Thanakorn & Leungcharoenwattana, Tuangrat & Poo-arporn, Yingyot & Jitkarnka, Sirirat, 2020. "Integrated glycerol- and ethanol-based chemical synthesis routes using Cu–Mg–Al LDH-derived catalysts without external hydrogen: Intervention of bio-ethanol co-fed with glycerol," Renewable Energy, Elsevier, vol. 156(C), pages 975-985.
    5. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    6. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    7. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    8. Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
    9. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    10. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    11. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    12. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    13. Singh, N.B. & Kumar, Ashwani & Rai, Sarita, 2014. "Potential production of bioenergy from biomass in an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 65-78.
    14. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    15. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    16. Gomes, Glaucio J. & Costa, Michelle Budke & Bittencourt, Paulo R.S. & Zalazar, María Fernanda & Arroyo, Pedro A., 2021. "Catalytic improvement of biomass conversion: Effect of adding mesoporosity on MOR zeolite for esterification with oleic acid," Renewable Energy, Elsevier, vol. 178(C), pages 1-12.
    17. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    18. Yao, Zeng-Yu & Qi, Jian-Hua & Yin, Li-Ming, 2013. "Biodiesel production from Xanthoceras sorbifolia in China: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 57-65.
    19. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    20. Yang, Siyuan & Fang, Delin & Chen, Bin, 2019. "Human health impact and economic effect for PM2.5 exposure in typical cities," Applied Energy, Elsevier, vol. 249(C), pages 316-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:695-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.