IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p35-42.html
   My bibliography  Save this article

Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps

Author

Listed:
  • Minglu, Qu
  • Rao, Zhang
  • Jianbo, Chen
  • Yuanda, Cheng
  • Xudong, Zhao
  • Tongyao, Zhang
  • Zhao, Li

Abstract

Adopting thermal energy storage (TES) based reverse cycle defrosting (RCD) for cascade air source heat pumps (ASHPs) is a feasible way to tackle the defrosting problem when the cascade ASHP is operated in heating process. However, during TES-based RCD, the phase change material (PCM) undergoes multi-mode heat discharging process, resulting from different operating conditions in high temperature cycle (HTC) and low temperature cycle (LTC) of a cascade ASHP unit. The heat provided to HTC and LTC is therefore different, thus influences the performances of space heating and defrosting. In this paper, the heat coupling relations between the HTC and LTC during TES-based RCD were experimentally investigated. Five cases with the same amount of frost under different outdoor conditions were conducted. The total heat output to indoor space in HTC, the total heat consumption in LTC for defrosting and the heat provided to HTC and LTC by the PCM based heat exchanger (PCM-HE) were reported, and a discussion on the factors that influence heat coupling relations was then given. Contributions of this study are supposed to be used for adjusting the control strategy for TES-based RCD of a cascade ASHP unit.

Suggested Citation

  • Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:35-42
    DOI: 10.1016/j.renene.2019.08.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
    2. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    3. Qu, Minglu & Pan, Dongmei & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part II: Modeling analysis," Applied Energy, Elsevier, vol. 91(1), pages 274-280.
    4. Jang, Ji Young & Bae, Heung Hee & Lee, Seung Jun & Ha, Man Yeong, 2013. "Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency," Applied Energy, Elsevier, vol. 110(C), pages 9-16.
    5. Purjam, M. & Goudarzi, K., 2019. "High efficiency sub-critical carbon dioxide supplementary heat pump for low temperature climates (energy and exergy analysis)," Renewable Energy, Elsevier, vol. 133(C), pages 166-176.
    6. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments," Applied Energy, Elsevier, vol. 91(1), pages 122-129.
    7. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    8. Chae, Jung-Hoon & Choi, Jong Min, 2015. "Evaluation of the impacts of high stage refrigerant charge on cascade heat pump performance," Renewable Energy, Elsevier, vol. 79(C), pages 66-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jinshuang & Li, Sheng & Wu, Fan & Jiang, Long & Zhao, Yazhou & Zhang, Xuejun, 2024. "Study on efficient heating method by solar coupled air source heat pump system with phase change heat storage in severe cold region," Applied Energy, Elsevier, vol. 367(C).
    2. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    3. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    4. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
    2. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    3. Ma, Jiacheng & Kim, Donghun & Braun, James E. & Horton, W. Travis, 2023. "Development and validation of a dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting," Energy, Elsevier, vol. 272(C).
    4. Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
    5. Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
    6. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    7. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    8. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    9. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    10. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    11. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    12. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    13. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    14. Song, Mengjie & Deng, Shiming & Xia, Liang, 2014. "A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil," Applied Energy, Elsevier, vol. 136(C), pages 537-547.
    15. Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
    16. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    17. Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.
    18. Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
    19. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
    20. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:35-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.