Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.04.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tassou, S.A. & Marquand, C.J., 1987. "Effects of evaporator frosting and defrosting on the performance of air-to-water heat pumps," Applied Energy, Elsevier, vol. 28(1), pages 19-33.
- Choi, Hwan-Jong & Kim, Byung-Soon & Kang, Donghoon & Kim, Kyung Chun, 2011. "Defrosting method adopting dual hot gas bypass for an air-to-air heat pump," Applied Energy, Elsevier, vol. 88(12), pages 4544-4555.
- Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
- Zhiyi, Wang & Xinmin, Wang & Zhiming, Dong, 2008. "Defrost improvement by heat pump refrigerant charge compensating," Applied Energy, Elsevier, vol. 85(11), pages 1050-1059, November.
- Kaygusuz, Kamil, 1994. "Performance of an air-to-air heat pump under frosting and defrosting conditions," Applied Energy, Elsevier, vol. 48(3), pages 225-241.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
- Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
- Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
- Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
- Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.
- Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
- Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
- Zhao, Han & Liu, Zihan & Sang, Yufeng & Chang, Junzhi & Zheng, Xuejing & Jurasz, Jakub & Zheng, Wandong, 2024. "A visual defrosting control method for air source heat pump system based on machine vision," Energy, Elsevier, vol. 302(C).
- Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
- Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
- Kofi Owura Amoabeng & Kwang Ho Lee & Jong Min Choi, 2019. "Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System," Energies, MDPI, vol. 12(23), pages 1-22, December.
- Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
- Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
- Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Jaehong & Choi, Hwan-Jong & Kim, Kyung Chun, 2015. "A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region," Applied Energy, Elsevier, vol. 147(C), pages 344-352.
- Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
- Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments," Applied Energy, Elsevier, vol. 91(1), pages 122-129.
- Wang, W. & Feng, Y.C. & Zhu, J.H. & Li, L.T. & Guo, Q.C. & Lu, W.P., 2013. "Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions," Applied Energy, Elsevier, vol. 112(C), pages 1138-1145.
- Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
- Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
- Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
- Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
- Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
- Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
- Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
- Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
- Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.
- Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
- Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
- Ming Tao & Yanzhe Yu & Huan Zhang & Tianzhen Ye & Shijun You & Mengting Zhang, 2021. "Research on the Optimization Design of Solar Energy-Gas-Fired Boiler Systems for Decentralized Heating," Energies, MDPI, vol. 14(11), pages 1-27, May.
- Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
- Wang, W. & Xiao, J. & Guo, Q.C. & Lu, W.P. & Feng, Y.C., 2011. "Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena," Applied Energy, Elsevier, vol. 88(12), pages 4470-4480.
- Zhiyi, Wang & Xinmin, Wang & Zhiming, Dong, 2008. "Defrost improvement by heat pump refrigerant charge compensating," Applied Energy, Elsevier, vol. 85(11), pages 1050-1059, November.
More about this item
Keywords
Heat pump; Defrost; Hot gas bypass defrosting; Frost;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:9-16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.