IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i10p1587-1599.html
   My bibliography  Save this article

Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations

Author

Listed:
  • Al-Baghdadi, Maher A.R. Sadiq

Abstract

Using semi-empirical equations for modeling a proton exchange membrane fuel cell is proposed for providing a tool for the design and analysis of fuel cell total systems. The focus of this study is to derive an empirical model including process variations to estimate the performance of fuel cell without extensive calculations. The model take into account not only the current density but also the process variations, such as the gas pressure, temperature, humidity, and utilization to cover operating processes, which are important factors in determining the real performance of fuel cell. The modelling results are compared well with known experimental results. The comparison shows good agreements between the modeling results and the experimental data. The model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system.

Suggested Citation

  • Al-Baghdadi, Maher A.R. Sadiq, 2005. "Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations," Renewable Energy, Elsevier, vol. 30(10), pages 1587-1599.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:10:p:1587-1599
    DOI: 10.1016/j.renene.2004.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104004604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & Ahmed Fathy, 2020. "Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    2. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    3. Apostolou, Dimitrios, 2020. "Optimisation of a hydrogen production – storage – re-powering system participating in electricity and transportation markets. A case study for Denmark," Applied Energy, Elsevier, vol. 265(C).
    4. Rezk, Hegazy & Dousoky, Gamal M., 2016. "Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 941-953.
    5. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    6. Moreira, Marcos V. & da Silva, Gisele E., 2009. "A practical model for evaluating the performance of proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 34(7), pages 1734-1741.
    7. Valverde-Isorna, L. & Ali, D. & Hogg, D. & Abdel-Wahab, M., 2016. "Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1313-1332.
    8. Haji, Shaker, 2011. "Analytical modeling of PEM fuel cell i–V curve," Renewable Energy, Elsevier, vol. 36(2), pages 451-458.
    9. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    10. Gomes, R.S. & De Bortoli, A.L., 2016. "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1292-1301.
    11. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    12. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    13. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    14. Liu, Jia Xing & Guo, Hang & Ye, Fang & Ma, Chong Fang, 2017. "Two-dimensional analytical model of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 119(C), pages 299-308.
    15. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:10:p:1587-1599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.