IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1691-1699.html
   My bibliography  Save this article

Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches

Author

Listed:
  • Yang, Xuanmin
  • Kang, Kang
  • Qiu, Ling
  • Zhao, Lixin
  • Sun, Renhua

Abstract

Pruned apple tree branches are abundant and ideal raw material for biomass carbonization due to less ash. It would provide valuable guide to study the effect of carbonization conditions on the biochar characteristics for high-efficiency energy utilization of pruned branches. In this study, we systematically investigated the effects of carbonization conditions on yield and fixed carbon content by using the reaction temperature, heating rate, and holding time as factors in an experiment. The results were evaluated through a single-factor test and response surface analysis. Based on the results of single-factor experiments, the following conditions were determined to be appropriate for the carbonization of pruned apple tree branches: a temperature of 500 °C, heating rate of 4 °C/min, and holding time of 120 min. According to the central composite design test of the response surface methodology, the temperature, heating rate, and holding time had an extremely significant effect on yield and fixed carbon content. The effects of the main factors influencing yield decreased in the order temperature > holding time > heating rate, whereas that on the fixed carbon content was temperature > heating rate > holding time. In the range of the factor levels studied, the interaction between temperature and holding time has a significant effect on yield and an extremely significant effect on the fixed carbon content. The interactions between pairs of the other factors did not significantly affect the yield or fixed carbon content.

Suggested Citation

  • Yang, Xuanmin & Kang, Kang & Qiu, Ling & Zhao, Lixin & Sun, Renhua, 2020. "Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches," Renewable Energy, Elsevier, vol. 146(C), pages 1691-1699.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1691-1699
    DOI: 10.1016/j.renene.2019.07.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    2. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    3. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
    4. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    5. Yuan, Xingzhong & Liu, Jia & Zeng, Guangming & Shi, Jingang & Tong, Jingyi & Huang, Guohe, 2008. "Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology," Renewable Energy, Elsevier, vol. 33(7), pages 1678-1684.
    6. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    7. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    8. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    9. Katyal, Surinder & Thambimuthu, Kelly & Valix, Marjorie, 2003. "Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics," Renewable Energy, Elsevier, vol. 28(5), pages 713-725.
    10. Esonye, Chizoo & Onukwuli, Okechukwu Dominic & Ofoefule, Akuzuo Uwaoma, 2019. "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 130(C), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Liangmeng & Feng, Zixing & Gao, Qi & Hou, Yanmei & He, Yuyu & Ren, Hao & Su, Mengfu & Liu, Zhijia & Hu, Wanhe, 2022. "A novel mechanical kiln for bamboo molded charcoals manufacturing," Applied Energy, Elsevier, vol. 326(C).
    2. Meng, Fanbin & Wang, Donghai, 2020. "Effects of vacuum freeze drying pretreatment on biomass and biochar properties," Renewable Energy, Elsevier, vol. 155(C), pages 1-9.
    3. Rositsa Velichkova & Martin Pushkarov & Radostina A. Angelova & Ognyan Sandov & Detelin Markov & Iskra Simova & Peter Stankov, 2022. "Exploring the Potential of Straw Biochar for Environmentally Friendly Fertilizers," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    4. Salvador Carlos-Hernández & Artemio Carrillo-Parra & Lourdes Díaz-Jiménez & Lidia Rosaura Salas-Cruz & Rigoberto Rosales-Serna & Maginot Ngangyo-Heya, 2023. "Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico," Resources, MDPI, vol. 12(9), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    2. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    3. Mariusz Wądrzyk & Marek Plata & Kamila Zaborowska & Rafał Janus & Marek Lewandowski, 2021. "Py-GC-MS Study on Catalytic Pyrolysis of Biocrude Obtained via HTL of Fruit Pomace," Energies, MDPI, vol. 14(21), pages 1-16, November.
    4. Gillian Eggleston & Isabel Lima, 2015. "Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries," Sustainability, MDPI, vol. 7(9), pages 1-27, September.
    5. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    6. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    7. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    8. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    10. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    11. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    12. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    13. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    14. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    15. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    16. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    17. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    18. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    19. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    20. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1691-1699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.