IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1709-1719.html
   My bibliography  Save this article

Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel

Author

Listed:
  • Xie, Wenlei
  • Wang, Hao

Abstract

In accordance with the need of green and sustainable development, a magnetically recyclable solid catalyst was developed for the transformation of low-cost oils to biodiesel via simultaneous transesterification and esterifications in an efficient and environmentally benign manner. For this aim, the magnetic Fe3O4/SiO2 composites composed of iron oxides as the core and silica as the shell, were prepared, and then polymeric acidic ionic liquid (IL) was immobilized on the magnetic support through radical grafting copolymerization of Brønsted acidic IL, 1-vinyl-3-(3-sulfopropyl)imidazolium hydrogen sulfate, onto the magnetic support. The characterization results showed that the perfect core-shell structured Fe3O4/SiO2 support with good magnetic responsiveness was formed, and the polymeric acidic IL was tethered on the magnetic support. The combination of polymeric acidic IL with magnetic porous nanoparticles could enhance the catalytic activity and favored the separation performance of the catalyst. The solid catalyst exhibited high activities for both transesterification of soybean oil and esterification of free fatty acids generally presented in low-cost oils. Moreover, the catalyst could be simply recovered magnetically and efficiently reutilized for several times without significant loss in its activity, thus allowing its being potentially applicable for green and economic production of biodiesel especially from the low-cost oil feedstocks.

Suggested Citation

  • Xie, Wenlei & Wang, Hao, 2020. "Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oi," Renewable Energy, Elsevier, vol. 145(C), pages 1709-1719.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1709-1719
    DOI: 10.1016/j.renene.2019.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Liang Zhou & Jingang Yao & Zhaoxia Ren & Zhenqiang Yu & Hongzhen Cai, 2020. "Development of Magnetic Multi-Shelled Hollow Catalyst for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Torkzaban, Sama & Feyzi, Mostafa & norouzi, Leila, 2022. "A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil," Renewable Energy, Elsevier, vol. 200(C), pages 996-1007.
    4. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    5. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    6. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    7. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    8. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    9. Hafizi, Hamid & Walker, Gavin & Collins, Maurice N., 2022. "Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst," Renewable Energy, Elsevier, vol. 183(C), pages 459-471.
    10. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    11. Daniel Carreira Batalha & Márcio José da Silva, 2021. "Biodiesel Production over Niobium-Containing Catalysts: A Review," Energies, MDPI, vol. 14(17), pages 1-33, September.
    12. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Wang, Yue & Liu, Huai & Zhang, Junhua & Cheng, Yuan & Lin, Wansi & Huang, Rulu & Peng, Lincai, 2022. "Direct epitaxial synthesis of magnetic biomass derived acid/base bifunctional zirconium-based hybrid for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone," Renewable Energy, Elsevier, vol. 197(C), pages 911-921.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1709-1719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.