IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3002-d685959.html
   My bibliography  Save this article

Forced Convection of Non-Newtonian Nanofluid Flow over a Backward Facing Step with Simultaneous Effects of Using Double Rotating Cylinders and Inclined Magnetic Field

Author

Listed:
  • Lioua Kolsi

    (Mechanical Engineering Department, College of Engineering, University of Ha’il, Ha’il City 81451, Saudi Arabia
    Laboratory of Meteorology and Energy Systems, University of Monastir, Monastir 5000, Tunisia)

  • Fatih Selimefendigil

    (Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, Turkey)

  • Lotfi Ben Said

    (Mechanical Engineering Department, College of Engineering, University of Ha’il, Ha’il City 81451, Saudi Arabia)

  • Abdelhakim Mesloub

    (Architectural Engineering Department, College of Engineering, University of Ha’il, Ha’il City 81451, Saudi Arabia)

  • Faisal Alresheedi

    (Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia)

Abstract

The forced convection of non-Newtonian nanofluid for a backward-facing flow system was analyzed under the combined use of magnetic field and double rotating cylinders by using finite element method. The power law nanofluid type was used with different solid volume fractions of alumina at 20 nm in diameter. The effects of the Re number ( 100 ≤ Re ≤ 300 ), rotational Re number ( − 2500 ≤ Rew ≤ 3000 ), Ha number ( 0 ≤ Ha ≤ 50 ), and magnetic field inclination ( 0 ≤ γ ≤ 90 ) on the convective heat transfer and flow features were numerically assessed. The non-Newtonian fluid power law index was taken between 0.8 and 1.2 while particle volume fractions up to 4% were considered. The presence of the rotating double cylinders made the flow field complicated where multiple recirculation regions were established near the step region. The impacts of the first (closer to the step) and second cylinders on the heat transfer behavior were different depending upon the direction of rotation. As the first cylinder rotated in the clockwise direction, the enhancement in the average heat transfer of 20% was achieved while it deteriorated by approximately 2% for counter-clockwise directional rotation. However, for the second cylinder, both the rotational direction resulted in heat transfer augmentation while the amounts were 14% and 18% at the highest speeds. Large vortices on the upper and lower channel walls behind the step were suppressed with magnetic field effects. The average Nu number generally increased with the higher strengths of the magnetic field and inclination. Up to 30% increment with strength was obtained while this amount was 44% with vertical orientation. Significant impacts of power law fluid index on the local and average Nu number were seen for an index of n = 1.2 as compared to the fluid with n = 0.8 and n = 1 while an average Nu number of 2.75 times was obtained for the flow system for fluid with n = 1.2 as compared to case for fluid with the n value of 0.8. Further improvements in the local and average heat transfer were achieved with using nanoparticles while at the highest particle amount, the enhancements of the average Nu number were 34%, 36% and 36.6% for the fluid with n values of 0.8, 1 and 1.2, respectively.

Suggested Citation

  • Lioua Kolsi & Fatih Selimefendigil & Lotfi Ben Said & Abdelhakim Mesloub & Faisal Alresheedi, 2021. "Forced Convection of Non-Newtonian Nanofluid Flow over a Backward Facing Step with Simultaneous Effects of Using Double Rotating Cylinders and Inclined Magnetic Field," Mathematics, MDPI, vol. 9(23), pages 1-21, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3002-:d:685959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Hafiz Muhammad & Ali, Hassan & Liaquat, Hassan & Bin Maqsood, Hafiz Talha & Nadir, Malik Ahmed, 2015. "Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids," Energy, Elsevier, vol. 84(C), pages 317-324.
    2. Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
    3. Bhattad, Atul & Sarkar, Jahar & Ghosh, Pradyumna, 2018. "Improving the performance of refrigeration systems by using nanofluids: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3656-3669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatih Selimefendigil & Mohamed Omri & Walid Aich & Hatem Besbes & Nidhal Ben Khedher & Badr M. Alshammari & Lioua Kolsi, 2023. "Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles," Mathematics, MDPI, vol. 11(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Shah, Tayyab Raza & Ali, Hafiz Muhammad & Zhou, Chao & Babar, Hamza & Janjua, Muhammad Mansoor & Doranehgard, Mohammad Hossein & Hussain, Abid & Sajjad, Uzair & Wang, Chi-Chuan & Sultan, Muhamad, 2022. "Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study," Energy, Elsevier, vol. 246(C).
    3. Mukkamala, Yagnavalkya, 2017. "Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1208-1229.
    4. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    5. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    6. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    7. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems," Energy, Elsevier, vol. 213(C).
    9. Gianpiero Colangelo & Noemi Francesca Diamante & Marco Milanese & Giuseppe Starace & Arturo de Risi, 2021. "A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup," Energies, MDPI, vol. 14(18), pages 1-56, September.
    10. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    11. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    12. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    13. Vera-Medina, J. & Fernandez-Peruchena, C. & Guasumba, J. & Lillo-Bravo, I., 2021. "Performance analysis of factory-made thermosiphon solar water heating systems," Renewable Energy, Elsevier, vol. 164(C), pages 1215-1229.
    14. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    15. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    16. Arora, Neeti & Gupta, Munish, 2020. "An updated review on application of nanofluids in flat tubes radiators for improving cooling performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    18. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
    20. Diniz, Filipe L.J. & Vital, Caio V.P. & Gómez-Malagón, Luis A., 2022. "Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids," Renewable Energy, Elsevier, vol. 186(C), pages 51-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3002-:d:685959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.