IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp521-530.html
   My bibliography  Save this article

Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production

Author

Listed:
  • Yang, Hongnan
  • Deng, Liangwei
  • Wang, Lan
  • Zheng, Dan
  • Liu, Yi
  • Wang, Shuang
  • Huang, Fangyu

Abstract

The comparative process performance and efficiency of reactors treating swine wastewater for biogas production at 35 °C were evaluated for three biomass-retaining reactors with different configurations and operational conditions: an anaerobic sequencing batch reactor (ASBR), an upflow anaerobic sludge bed-filter (UBF) and an upflow solid reactor (USR). The maximum volumetric methane production rates of the ASBR, UBF and USR were 1.679, 1.669 and 1.234 L L−1 d−1, respectively, at the OLR of 8 g TS L−1 d−1. Compared with the USR, the ASBR and UBF achieved better performance, which was attributed to more efficient biomass retention indicated by a higher solids residence time-to-hydraulic residence time ratio. The worst performance of the USR was caused by serious washout of sludge. The microorganism distribution profile along with depth showed that methanogenic genera of Methanosaeta and Methanospirillum accounted for 81.37–90.83% and 77.67–88.50% of all archaeal clones in the ASBR and UBF, respectively, and presented non-obvious spatial heterogeneity, while the abundances of methanogenic genera decreased from 93.61 to 4.64% with depth in the USR, instead of an increase in the populations of acid resistant bacteria.

Suggested Citation

  • Yang, Hongnan & Deng, Liangwei & Wang, Lan & Zheng, Dan & Liu, Yi & Wang, Shuang & Huang, Fangyu, 2019. "Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production," Renewable Energy, Elsevier, vol. 138(C), pages 521-530.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:521-530
    DOI: 10.1016/j.renene.2019.01.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    2. Xin Jing & Nathan J. Sanders & Yu Shi & Haiyan Chu & Aimée T. Classen & Ke Zhao & Litong Chen & Yue Shi & Youxu Jiang & Jin-Sheng He, 2015. "The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Deng, Liangwei & Liu, Yi & Zheng, Dan & Wang, Lan & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui & Chen, Ziai & Long, Yan, 2017. "Application and development of biogas technology for the treatment of waste in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 845-851.
    4. Fuess, Lucas Tadeu & Kiyuna, Luma Sayuri Mazine & Ferraz, Antônio Djalma Nunes & Persinoti, Gabriela Felix & Squina, Fabio Marcio & Garcia, Marcelo Loureiro & Zaiat, Marcelo, 2017. "Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse," Applied Energy, Elsevier, vol. 189(C), pages 480-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    4. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    5. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    6. Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
    7. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    8. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    9. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    10. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    11. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    12. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    13. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    15. Takeda, Paula Yumi & Oliveira, Cristiane Arruda & Dias, Maria Eduarda Simões & Paula, Carolina Tavares & Borges, André do Vale & Damianovic, Márcia Helena Rissato Zamariolli, 2022. "Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor," Renewable Energy, Elsevier, vol. 195(C), pages 1218-1229.
    16. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    17. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    19. Robyn Meeks & Katharine R. E. Sims & Hope Thompson, 2019. "Waste Not: Can Household Biogas Deliver Sustainable Development?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 763-794, March.
    20. Luo, Tao & Pan, Junting & Fu, Lintao & Mei, Zili & Kong, Cuixue & Huang, Hailong, 2017. "Reducing biogas emissions from village-scale plant with optimal floating-drum biogas storage tank and operation parameters," Applied Energy, Elsevier, vol. 208(C), pages 312-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:521-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.