IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324533.html
   My bibliography  Save this article

Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester

Author

Listed:
  • Gaballah, Eid S.
  • Abdelkader, Tarek Kh
  • Luo, Shuai
  • Yuan, Qiaoxia
  • El-Fatah Abomohra, Abd

Abstract

In rural areas of China, household digesters play a significant role to improve the rural production and living conditions, leading to energy conservation and reduction of emissions. However, the cold temperature of digesters results in relatively low digestion efficiency and reduction of biogas yield. The present study aimed to investigate the potential of integrated solar heating techniques to raise the slurry temperature within a low-cost tubular digester and its impact on the biogas yield. Two similar digesters were used, the first one (D1) was heated by the solar greenhouse integrated with a solar water heating system and a capillary heat exchanger, while the second (D2) was heated by only solar greenhouse, and both digesters were above ground and were fed with cattle manure. The results showed average slurry temperature of 9.5 and 4.9 °C above the mean ambient temperature for D1 and D2, respectively. Furthermore, the mean specific biogas production of D1 and D2 were 247 and 181 L/kg VS, respectively, with no significant variations in the methane content (≈62.7%). The study indicated that using of integrated solar energy is efficient to achieve the optimum temperature for the process of biogas production roughly the most of the year.

Suggested Citation

  • Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324533
    DOI: 10.1016/j.energy.2019.116758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurizio Volpe & Carmelo D'Anna & Simona Messineo & Roberto Volpe & Antonio Messineo, 2014. "Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    2. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    3. Deng, Liangwei & Liu, Yi & Zheng, Dan & Wang, Lan & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui & Chen, Ziai & Long, Yan, 2017. "Application and development of biogas technology for the treatment of waste in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 845-851.
    4. Kinyua, Maureen N. & Rowse, Laurel E. & Ergas, Sarina J., 2016. "Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 896-910.
    5. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    6. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).
    2. Anthony Njuguna Matheri & Esther Nabadda & Belaid Mohamed, 2024. "Sustainable and circularity in the decentralized hybrid solar-bioenergy system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16987-17011, July.
    3. Garkoti, Pankaj & Ni, Ji-Qin & Thengane, Sonal K., 2024. "Energy management for maintaining anaerobic digestion temperature in biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. A. S. M. Younus Bhuiyan Sabbir & Chayan Kumer Saha & Rajesh Nandi & Md. Forid Uz Zaman & Md. Monjurul Alam & Shiplu Sarker, 2021. "Effects of Seasonal Temperature Variation on Slurry Temperature and Biogas Composition of a Commercial Fixed-Dome Anaerobic Digester Used in Bangladesh," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    5. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2023. "Dynamic Simulation and Thermoeconomic Analysis of a Novel Hybrid Solar System for Biomethane Production by the Organic Fraction of Municipal Wastes," Energies, MDPI, vol. 16(6), pages 1-23, March.
    6. Han, Fengwu & Zhao, Yunlong & Zeng, Jianfeng & Zhang, Shengnan & Wu, Tianyu, 2024. "Uncertain parameters adjustable two-stage robust optimization of a rural housing integrated energy system considering biomass on-site utilization," Energy, Elsevier, vol. 296(C).
    7. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    8. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    9. Kimberley E. Miller & Tess Herman & Dimas A. Philipinanto & Sarah C. Davis, 2021. "Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    10. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    11. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    12. Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
    13. Li, Dong & Cai, Jiangkuo & Arıcı, Müslüm & Zhao, Xuefeng & Meng, Lan & Wu, Yangyang & Gao, Meng & Wang, Di, 2024. "Operational characteristics of solar-gas combined heating water system with phase change heat storage units for oilfield hot water stations," Energy, Elsevier, vol. 302(C).
    14. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    5. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    6. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    8. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    10. Victor Hugo Souza de Abreu & Victória Gonçalves Ferreira Pereira & Laís Ferreira Crispino Proença & Fabio Souza Toniolo & Andrea Souza Santos, 2023. "A Systematic Study on Techno-Economic Evaluation of Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-23, September.
    11. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    13. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    14. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    15. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    16. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    17. Jacopo Bacenetti, 2020. "Economic and Environmental Impact Assessment of Renewable Energy from Biomass," Sustainability, MDPI, vol. 12(14), pages 1-5, July.
    18. Kapoor, Rimika & Subbarao, P.M.V. & Vijay, Virendra Kumar & Shah, Goldy & Sahota, Shivali & Singh, Dhruv & Verma, Mahesh, 2017. "Factors affecting methane loss from a water scrubbing based biogas upgrading system," Applied Energy, Elsevier, vol. 208(C), pages 1379-1388.
    19. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    20. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.