IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4196.html
   My bibliography  Save this article

Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms

Author

Listed:
  • Robert Vautard

    (Laboratoire des Sciences du Climat et de l’Environnement, IPSL, laboratoire CEA-CNRS-UVSQ Orme des Merisiers)

  • Françoise Thais

    (I-Tésé, Institut de Technico-Economie des Systèmes Energétiques CEA/DEN/DANS Centre de Saclay Batiment 125)

  • Isabelle Tobin

    (Laboratoire des Sciences du Climat et de l’Environnement, IPSL, laboratoire CEA-CNRS-UVSQ Orme des Merisiers)

  • François-Marie Bréon

    (Laboratoire des Sciences du Climat et de l’Environnement, IPSL, laboratoire CEA-CNRS-UVSQ Orme des Merisiers)

  • Jean-Guy Devezeaux de Lavergne

    (I-Tésé, Institut de Technico-Economie des Systèmes Energétiques CEA/DEN/DANS Centre de Saclay Batiment 125)

  • Augustin Colette

    (Institut National de l’Environnement industriel et de RISques, Parc Technologique Alata, BP2)

  • Pascal Yiou

    (Laboratoire des Sciences du Climat et de l’Environnement, IPSL, laboratoire CEA-CNRS-UVSQ Orme des Merisiers)

  • Paolo Michele Ruti

    (ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development
    UTMEA-CLIM Energy Environment Modeling Unit—Climate & Impact Modeling Laboratory)

Abstract

The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0–5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

Suggested Citation

  • Robert Vautard & Françoise Thais & Isabelle Tobin & François-Marie Bréon & Jean-Guy Devezeaux de Lavergne & Augustin Colette & Pascal Yiou & Paolo Michele Ruti, 2014. "Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4196
    DOI: 10.1038/ncomms4196
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4196
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    2. Tuchtenhagen, Patrícia & Carvalho, Gilvani Gomes de & Martins, Guilherme & Silva, Pollyanne Evangelista da & Oliveira, Cristiano Prestrelo de & de Melo Barbosa Andrade, Lara & Araújo, João Medeiros de, 2020. "WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil," Energy, Elsevier, vol. 190(C).
    3. Yuan Zhou & Meijuan Pan & Frauke Urban, 2018. "Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV) Industries: Patent Analysis and Implications for Sustainable Development," Sustainability, MDPI, vol. 10(6), pages 1-34, June.
    4. Wang, Qiang & Luo, Kun & Wu, Chunlei & Fan, Jianren, 2019. "Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China," Energy, Elsevier, vol. 183(C), pages 1136-1149.
    5. Jianbo Yang & Qunyi Liu & Xin Li & Xiandan Cui, 2017. "Overview of Wind Power in China: Status and Future," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    6. Balog, Irena & Ruti, Paolo M. & Tobin, Isabelle & Armenio, Vincenzo & Vautard, Robert, 2016. "A numerical approach for planning offshore wind farms from regional to local scales over the Mediterranean," Renewable Energy, Elsevier, vol. 85(C), pages 395-405.
    7. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    8. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.
    9. François, B. & Hingray, B. & Raynaud, D. & Borga, M. & Creutin, J.D., 2016. "Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix," Renewable Energy, Elsevier, vol. 87(P1), pages 686-696.
    10. Porchetta, Sara & Muñoz-Esparza, Domingo & Munters, Wim & van Beeck, Jeroen & van Lipzig, Nicole, 2021. "Impact of ocean waves on offshore wind farm power production," Renewable Energy, Elsevier, vol. 180(C), pages 1179-1193.
    11. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
    12. Kaffine, Daniel T., 2019. "Microclimate effects of wind farms on local crop yields," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 159-173.
    13. François, B., 2016. "Influence of winter North-Atlantic Oscillation on Climate-Related-Energy penetration in Europe," Renewable Energy, Elsevier, vol. 99(C), pages 602-613.
    14. Prósper, Miguel A. & Otero-Casal, Carlos & Fernández, Felipe Canoura & Miguez-Macho, Gonzalo, 2019. "Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations," Renewable Energy, Elsevier, vol. 135(C), pages 674-686.
    15. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.