IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp1048-1055.html
   My bibliography  Save this article

Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials

Author

Listed:
  • Laosiripojana, Weerawan
  • Kiatkittipong, Worapon
  • Sakdaronnarong, Chularat
  • Assabumrungrat, Suttichai
  • Laosiripojana, Navadol

Abstract

Catalytic hydrotreatment of pyrolysis-oil from biomass is an important process to improve oil characteristics for use as liquid fuel. Bimetallic NiCu catalysts are currently attractive for use in hydrotreatment process due to its highly active for hydrogenation, hydrodeoxygenation and hydrocracking reactions. In this study, NiCu catalyst supported by several mono-oxide (i.e. γ-Al2O3, ZrO2, SBA-15 and MCM-41) and mixed-oxide (ZrO2-SBA-15 and ZrO2-MCM-41) materials was tested for hydrotreatment of guaiacol (as pyrolysis-oil model compound) and pyrolysis-oil from eucalyptus under several reaction temperatures (200–350 °C) and times (1–6 h). Among all catalysts, NiCu/ZrO2-SBA-15 showed the highest activity toward the hydrotreatment of guaiacol, from which hydrodeoxygenation yield of 87.3% with relatively low carbon deposition (3.4 wt%) was achieved from the reaction at 325 °C for 2 h. For the hydrotreatment of pyrolysis-oil in the presence of NiCu/ZrO2-SBA-15, ungraded oil with favorable qualities (i.e. high H/C ratio and low thermogravimetric residue) was obtained from the reaction at 350 °C for 3 h. After reaction test, catalyst regeneration and reusability were also studied. The regeneration of spent NiCu/ZrO2-SBA-15 by oxidation with O2 at 600 °C for 3 h can remove most of carbon species from catalyst surface with insignificant change in catalyst surface properties. In addition, the regenerated catalyst can be reused for at least 5 reaction cycles without significant deactivation observed.

Suggested Citation

  • Laosiripojana, Weerawan & Kiatkittipong, Worapon & Sakdaronnarong, Chularat & Assabumrungrat, Suttichai & Laosiripojana, Navadol, 2019. "Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials," Renewable Energy, Elsevier, vol. 135(C), pages 1048-1055.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1048-1055
    DOI: 10.1016/j.renene.2018.12.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ying & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Liang, Wei, 2010. "Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/[gamma]-Al2O3 catalysts," Applied Energy, Elsevier, vol. 87(9), pages 2886-2891, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Yunwu & Wang, Jida & Liu, Can & Lu, Yi & Lin, Xu & Li, Wenbin & Zheng, Zhifeng, 2020. "Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio," Renewable Energy, Elsevier, vol. 154(C), pages 797-812.
    2. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yichen Liu & James J. Leahy & Jacek Grams & Witold Kwapinski, 2019. "Hydro-Pyrolysis and Catalytic Upgrading of Biomass and Its Hydroxy Residue Fast Pyrolysis Vapors," Energies, MDPI, vol. 12(18), pages 1-18, September.
    2. Zhang, Qing & Xu, Ying & Li, Yuping & Wang, Tiejun & Zhang, Qi & Ma, Longlong & He, Minghong & Li, Kai, 2015. "Investigation on the esterification by using supercritical ethanol for bio-oil upgrading," Applied Energy, Elsevier, vol. 160(C), pages 633-640.
    3. Chiang, Kung-Yuh & Chien, Kuang-Li & Lu, Cheng-Han, 2012. "Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy," Applied Energy, Elsevier, vol. 100(C), pages 164-171.
    4. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    5. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    6. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    7. Zhang, Zhaoxia & Bi, Peiyan & Jiang, Peiwen & Fan, Minghui & Deng, Shumei & Zhai, Qi & Li, Quanxin, 2015. "Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process," Energy, Elsevier, vol. 90(P2), pages 1922-1930.
    8. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    9. Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
    10. Zhang, Yuan & Wang, Yong & Cui, Hongyou & Zhao, Pingping & Song, Feng & Sun, Xiuyu & Xie, Yujiao & Yi, Weiming & Wang, Lihong, 2018. "Effects of hydrolysis and oxidative hydrolysis pretreatments on upgrading of the water-soluble fraction of bio-oil via decarboxylation," Applied Energy, Elsevier, vol. 226(C), pages 730-742.
    11. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    12. Zhao, Na & Li, Bao-Xia, 2016. "The effect of sodium chloride on the pyrolysis of rice husk," Applied Energy, Elsevier, vol. 178(C), pages 346-352.
    13. Prajitno, Hermawan & Insyani, Rizki & Park, Jongkeun & Ryu, Changkook & Kim, Jaehoon, 2016. "Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil," Applied Energy, Elsevier, vol. 172(C), pages 12-22.
    14. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    15. Zhang, Le & Liu, Ronghou & Yin, Renzhan & Mei, Yuanfei, 2013. "Upgrading of bio-oil from biomass fast pyrolysis in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 66-72.
    16. Arun, Naveenji & Sharma, Rajesh V. & Dalai, Ajay K., 2015. "Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 240-255.
    17. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    18. Byun, Jaewon & Han, Jeehoon, 2016. "Process synthesis and analysis for catalytic conversion of lignocellulosic biomass to fuels: Separate conversion of cellulose and hemicellulose using 2-sec-butylphenol (SBP) solvent," Applied Energy, Elsevier, vol. 171(C), pages 483-490.
    19. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    20. Saber, Mohammad & Nakhshiniev, Bakhtiyor & Yoshikawa, Kunio, 2016. "A review of production and upgrading of algal bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 918-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1048-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.