IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp446-452.html
   My bibliography  Save this article

Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw

Author

Listed:
  • Wang, Zhi-Wen
  • Zhu, Ming-Qiang
  • Li, Ming-Fei
  • Wei, Qin
  • Sun, Run-Cang

Abstract

Rapeseed straw is an annually renewable low-cost crop by-product, and it was submitted to hydrothermal treatment at temperatures ranging from 145 to 205 °C for various retention times (15–120 min). The enzymatic hydrolysis was conducted at a substrate concentration of 2% and an enzyme addition of 115 mg/g substrate. Results showed that increased pretreatment severity gradually degraded and removed hemicelluloses, and temperatures above 190 °C destroyed the crystalline structure of cellulose and led to partial delignification. The microstructure of the lignin was partially destroyed and particle-sized debris appeared on the surface of the cellulose fibres under the harsh treatment conditions. The glucose yield increased with an increase in severity and a higher saccharification ratio (95%) was achieved at a relatively low temperature (190 °C) and short retention time (15–30 min). These results suggest that hydrothermal treatment of rapeseed straw effectively dissolves hemicelluloses and remarkably enhances enzymatic hydrolysis efficiency.

Suggested Citation

  • Wang, Zhi-Wen & Zhu, Ming-Qiang & Li, Ming-Fei & Wei, Qin & Sun, Run-Cang, 2019. "Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw," Renewable Energy, Elsevier, vol. 134(C), pages 446-452.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:446-452
    DOI: 10.1016/j.renene.2018.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brienzo, Michel & Fikizolo, Simphiwe & Benjamin, Yuda & Tyhoda, Luvuyo & Görgens, Johann, 2017. "Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples," Renewable Energy, Elsevier, vol. 104(C), pages 271-280.
    2. Zhu, Ming-Qiang & Wen, Jia-Long & Wang, Zhi-Wen & Su, Yin-Quan & Wei, Qin & Sun, Run-Cang, 2015. "Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 158(C), pages 233-242.
    3. Mathew, Anil Kuruvilla & Chaney, Keith & Crook, Mitch & Humphries, Andrea Claire, 2011. "Dilute acid pre-treatment of oilseed rape straw for bioethanol production," Renewable Energy, Elsevier, vol. 36(9), pages 2424-2432.
    4. Choi, Chang Ho & Um, Byung Hwan & Kim, Young Soo & Oh, Kyeong Keun, 2013. "Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid," Applied Energy, Elsevier, vol. 102(C), pages 640-646.
    5. Kratky, Lukas & Jirout, Tomas, 2015. "The effect of process parameters during the thermal-expansionary pretreatment of wheat straw on hydrolysate quality and on biogas yield," Renewable Energy, Elsevier, vol. 77(C), pages 250-258.
    6. Coimbra, Michelle Cardoso & Duque, Aleta & Saéz, Felicia & Manzanares, Paloma & Garcia-Cruz, Crispin Humberto & Ballesteros, Mercedes, 2016. "Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 86(C), pages 1060-1068.
    7. Ebrahimi, Majid & Caparanga, Alvin R. & Ordono, Emma E. & Villaflores, Oliver B., 2017. "Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 109(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmine Ryma Ouahabi & Kenza Bensadok & Abdeldjalil Ouahabi, 2021. "Optimization of the Biomethane Production Process by Anaerobic Digestion of Wheat Straw Using Chemical Pretreatments Coupled with Ultrasonic Disintegration," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    2. Liu, Chaoqi & Liu, Mengjie & Wang, Ping & Chang, Juan & Yin, Qingqiang & Zhu, Qun & Lu, Fushan, 2020. "Effect of steam-assisted alkaline pretreatment plus enzymolysis on converting corn stalk into reducing sugar," Renewable Energy, Elsevier, vol. 159(C), pages 982-990.
    3. Timo Steinbrecher & Fabian Bonk & Marvin Scherzinger & Oliver Lüdtke & Martin Kaltschmitt, 2022. "Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment," Energies, MDPI, vol. 15(17), pages 1-27, August.
    4. Tommaso Giannoni & Mattia Gelosia & Alessandro Bertini & Giacomo Fabbrizi & Andrea Nicolini & Valentina Coccia & Paola Iodice & Gianluca Cavalaglio, 2021. "Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    5. Lee, Ilgyu & Yu, Ju-Hyun, 2021. "Design of hydrothermal and subsequent lime pretreatment for fermentable sugar and bioethanol production from acacia wood," Renewable Energy, Elsevier, vol. 174(C), pages 170-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    2. Duque, Aleta & Manzanares, Paloma & Ballesteros, Mercedes, 2017. "Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications," Renewable Energy, Elsevier, vol. 114(PB), pages 1427-1441.
    3. Lai, Long Wee & Idris, Ani, 2016. "Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk," Renewable Energy, Elsevier, vol. 99(C), pages 738-746.
    4. Mulka, Rafał & Szulczewski, Wiesław & Szlachta, Józef & Mulka, Mariusz, 2016. "Estimation of methane production for batch technology – A new approach," Renewable Energy, Elsevier, vol. 90(C), pages 440-449.
    5. Gomes, Michelle Garcia & Gurgel, Leandro Vinícius Alves & Baffi, Milla Alves & Pasquini, Daniel, 2020. "Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 157(C), pages 332-341.
    6. Argun, Hidayet & Onaran, Gülizar, 2016. "Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis," Renewable Energy, Elsevier, vol. 96(PA), pages 442-449.
    7. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    8. Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Prajapati, Bhanu Pratap & Jana, Uttam Kumar & Suryawanshi, Rahul Kumar & Kango, Naveen, 2020. "Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production," Renewable Energy, Elsevier, vol. 152(C), pages 653-663.
    10. Kulbeik, Tim & Scherzinger, Marvin & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Autoclave pre-treatment of foliage – Effects of temperature, residence time and water content on solid biofuel properties," Renewable Energy, Elsevier, vol. 171(C), pages 275-286.
    11. Tsegaye, Bahiru & Balomajumder, Chandrajit & Roy, Partha, 2020. "Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production," Renewable Energy, Elsevier, vol. 148(C), pages 923-934.
    12. Smichi, Neila & Messaoudi, Yosra & Ksouri, Riadh & Abdelly, Chedly & Gargouri, Mohamed, 2014. "Pretreatment and enzymatic saccharification of new phytoresource for bioethanol production from halophyte species," Renewable Energy, Elsevier, vol. 63(C), pages 544-549.
    13. Dong, Chengyu & Wang, Ying & Chan, Ka-Lai & Bhatia, Akanksha & Leu, Shao-Yuan, 2018. "Temperature profiling to maximize energy yield with reduced water input in a lignocellulosic ethanol biorefinery," Applied Energy, Elsevier, vol. 214(C), pages 63-72.
    14. Antonio Manuel Pérez-Merchán & Gabriela Rodríguez-Carballo & Benjamín Torres-Olea & Cristina García-Sancho & Pedro Jesús Maireles-Torres & Josefa Mérida-Robles & Ramón Moreno-Tost, 2022. "Recent Advances in Mechanochemical Pretreatment of Lignocellulosic Biomass," Energies, MDPI, vol. 15(16), pages 1-34, August.
    15. Chang, Xiaogang & Bai, Yuchen & Wu, Ruchun & Liu, Dehua & Zhao, Xuebing, 2020. "Heterogeneity of lignocellulose must be considered for kinetic study: A case on formic acid fractionation of sugarcane bagasse with different pseudo-homogeneous kinetic models," Renewable Energy, Elsevier, vol. 162(C), pages 2246-2258.
    16. Cheng, Jie & Hu, Sheng-Chun & Geng, Zeng-Chao & Zhu, Ming-Qiang, 2022. "Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis," Energy, Elsevier, vol. 254(PB).
    17. Zhang, Qi & Zhang, Pengfei & Pei, Z.J. & Wang, Donghai, 2013. "Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature," Renewable Energy, Elsevier, vol. 60(C), pages 127-136.
    18. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    19. Wang, Peng & Su, Yan & Tang, Wei & Huang, Caoxing & Lai, Chenhuan & Ling, Zhe & Yong, Qiang, 2022. "Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors," Renewable Energy, Elsevier, vol. 199(C), pages 1461-1468.
    20. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:446-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.