IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp321-329.html
   My bibliography  Save this article

Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants

Author

Listed:
  • Mühleisen, W.
  • Hirschl, C.
  • Brantegger, G.
  • Neumaier, L.
  • Spielberger, M.
  • Sonnleitner, H.
  • Kubicek, B.
  • Ujvari, G.
  • Ebner, R.
  • Schwark, M.
  • Eder, G.C.
  • Voronko, Y.
  • Knöbl, K.
  • Stoicescu, L.

Abstract

Over the last years, the development of innovative, fast and non-destructive characterisation techniques for the detection of PV-module failures and advanced analysis of yield losses in photovoltaic power plants has become a key challenge in scientific research. Besides standard on-site thermographic screening, several novel and easily applied methods were developed and successfully tested. They differ mainly in their possible field of application, their applicability in the detection of different failure types and their cost of setup and operation. In order to evaluate the boundary conditions of application for the various methods, different defective PV-modules were comparatively investigated with commercially available and innovative outdoor analysis methods. The results were evaluated with regard to error detection rate and economics. Based on this comparison, efficient operation and maintenance (O&M) measures for early and general failure detection within large power plants can be deducted.

Suggested Citation

  • Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:321-329
    DOI: 10.1016/j.renene.2018.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    2. Muehleisen, Wolfgang & Eder, Gabriele C. & Voronko, Yuliya & Spielberger, Markus & Sonnleitner, Horst & Knoebl, Karl & Ebner, Rita & Ujvari, Gusztav & Hirschl, Christina, 2018. "Outdoor detection and visualization of hailstorm damages of photovoltaic plants," Renewable Energy, Elsevier, vol. 118(C), pages 138-145.
    3. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    4. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mik, Krzysztof & Bugaj, Marcin & Chaja, Patryk, 2021. "The evaluation of the snail track affected photovoltaic modules by different methods after 3-year operating in central Poland," Renewable Energy, Elsevier, vol. 163(C), pages 504-516.
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    3. Álvaro Rodríguez-Martinez & Carlos Rodríguez-Monroy, 2021. "Economic Analysis and Modelling of Rooftop Photovoltaic Systems in Spain for Industrial Self-Consumption," Energies, MDPI, vol. 14(21), pages 1-32, November.
    4. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    5. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    3. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    6. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    8. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    9. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    10. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    11. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    12. João Gomes, 2019. "Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors," Energies, MDPI, vol. 12(15), pages 1-20, August.
    13. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    14. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    15. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    16. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    17. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    18. Adel Mellit & Omar Herrak & Catalina Rus Casas & Alessandro Massi Pavan, 2021. "A Machine Learning and Internet of Things-Based Online Fault Diagnosis Method for Photovoltaic Arrays," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    19. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    20. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:321-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.