Enhanced forced-convection from ribbed or machine-roughened inner surfaces within triangular ducts
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Leung, C. W. & Probert, S. D., 1997. "Forced-convective turbulent-flows through horizontal ducts with isosceles-triangular internal cross-sections," Applied Energy, Elsevier, vol. 57(1), pages 13-24, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
- Akansu, Selahaddin Orhan, 2006. "Heat transfers and pressure drops for porous-ring turbulators in a circular pipe," Applied Energy, Elsevier, vol. 83(3), pages 280-298, March.
- Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
- Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
- Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
- Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
- Leung, C. W. & Chen, S. & Wong, T. T. & Probert, S. D., 2000. "Forced convection and pressure drop in a horizontal triangular-sectional duct with V-grooved (i.e. orthogonal to the mean flow) inner surfaces," Applied Energy, Elsevier, vol. 66(3), pages 199-211, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:69:y:2001:i:2:p:87-99. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.